Skip to main content

Advertisement

Log in

Non-dominated solutions for time series learning and forecasting

Generating models with a Generic Two-Phase Pareto Loca Search with VND

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

While measuring forecasting accuracy has been intensively studied by researchers, the consideration of sets of non-dominated solutions has not yet been explored in the literature. Even when considering measures that are in harmony, small changes in model parameters can result in a trained system capable of forecasting different time series characteristics. In this regard, this study shows how a set of non-dominated forecasting models can assist decision makers to pick the most suitable model for operations on dynamic environments. In particular, the system presents an interesting trade-off provided with assistance of a new strategic measure, which forces the forecasting model to learn the highest values of the time series. An automatic self-adaptive forecasting framework, calibrated with Multi-Objective VND inspired techniques, and able to perform k-steps-ahead forecasting, is considered. There is a growing demand for learning big-data time series, such as those derived from sensors in energy mini/microgrid systems, in which real-time decisions should be made quickly and can vary according to the available energy resources. Thus, a case of study is considered using data from disaggregated power readings of a typical microgrid due to the fact that load demand forecasting, with different components of a house, is of crucial importance for management and operation of new emerging decentralized systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. A search was conducted on different global reference databases such as Web of Science, SCOPUS and IEEEXplore looking up for publications until October, 2020.

  2. Creating Pareto Fronts is a straightforward way to store models that present non-dominated characteristics [29].

  3. HFM code is currently available at https://github.com/vncoelho/HFM.

  4. OptFrame [9, 10] code is currently available at https://github.com/optframe/optframe.

  5. The code can be currently accessed at https://github.com/vncoelho/HFM, commit version with hash fbc2cd3657ad0519235280cd511f582914d8557b.

References

  1. Adhikari, R.: A neural network based linear ensemble framework for time series forecasting. Neurocomputing 157, 231–242 (2015). https://doi.org/10.1016/j.neucom.2015.01.012

    Article  Google Scholar 

  2. Armel, K.C., Gupta, A., Shrimali, G., Albert, A.: Is disaggregation the holy grail of energy efficiency? the case of electricity. Energy policy 52, 213–234 (2013). https://doi.org/10.1016/j.enpol.2012.08.062. Special section: transition pathways to a low carbon economy

  3. Aslam, S., Khalid, A., Javaid, N.: Towards efficient energy management in smart grids considering microgrids with day-ahead energy forecasting. Electr. Power Syst. Res. 182, 106232 (2020)

    Article  Google Scholar 

  4. Bukhari, A.H., Raja, M.A.Z., Sulaiman, M., Islam, S., Shoaib, M., Kumam, P.: Fractional neuro-sequential arfima-lstm for financial market forecasting. IEEE Access 8, 71326–71338 (2020)

    Article  Google Scholar 

  5. Cagnano, A., De Tuglie, E., Mancarella, P.: Microgrids: overview and guidelines for practical implementations and operation. Appl. Energy 258, 114039 (2020)

    Article  Google Scholar 

  6. Cascio, M.L.L., Pesamosca, G.: Learning with zero error in feedforward neural networks. In: Marinaro, M., Morasso, P.G. (eds.) ICANN ’94, pp. 619–622. Springer, London, London (1994)

    Chapter  Google Scholar 

  7. Coelho, B.N., Coelho, V.N., Coelho, I.M., Ochi, L.S., Haghnazar, R., Zuidema, D., da Costa, A.R.: A multi-objective green UAV routing problem. Comput. Oper. Res. 88, 306–315 (2017)

    Article  MathSciNet  Google Scholar 

  8. Coelho, I.M., Coelho, V.N., Luz, E.J.D.S., Ochi, L.S., Guimaraes, F.G., Rios, E.: A GPU deep learning metaheuristic based model for time series forecasting. Appl. Energy 201, 412–418 (2017)

    Article  Google Scholar 

  9. Coelho, I.M., Coelho, V.N., Zudio, A., Araújo, R., Haddad, M.N., Munhoz, P.L.A., Maia, B.S.M., Ochi, L.S., Souza, M.J.F.: Microbenchmark studies in optframe: a 10-year anniversary. In: LII Simpósio Brasileiro de Pesquisa Operacional, pp. 1 – 12. João Pessoa, PB (2020)

  10. Coelho, I.M., Ribas, S., Perche, M.H.P., Munhoz, P.L.A., Souza, M.F., Ochi, L.S.: Optframe: a computational framework for combinatorial optimization problems. In: XLII Simpósio Brasileiro de Pesquisa Operacional, pp. 1887 – 1898. Bento Gonçalves, RS (2010)

  11. Coelho, V., Coelho, I., Coelho, B., Souza, M., Guimarães, F., da S. Luz, E., Barbosa, A., Coelho, M., Netto, G., Costa, R., Pinto, A., de P. Figueiredo, A., Elias, M., Filho, D., Oliveira, T.: EEG time series learning and classification using a hybrid forecasting model calibrated with GVNS. Electronic notes in discrete mathematics 58, 79 – 86 (2017). https://doi.org/10.1016/j.endm.2017.03.011. 4th International conference on variable neighborhood search

  12. Coelho, V.N., Coelho, I.M., Coelho, B.N., Reis, A.J.R., Enayatifar, R., Souza, M.J.F., Guimarães, F.G.: A self-adaptive evolutionary fuzzy model for load forecasting problems on smart grid environment. Appl. Energy 169, 567–584 (2016). https://doi.org/10.1016/j.apenergy.2016.02.045

    Article  Google Scholar 

  13. Coelho, V.N., Coelho, I.M., Meneghini, I.R., Souza, M.J.F., Guimaraes, F.G.: An automatic calibration framework applied on a metaheuristic fuzzy model for the cif competition. In: 2016 International joint conference on neural networks (IJCNN), pp. 1507–1514 (2016). https://doi.org/10.1109/IJCNN.2016.7727377

  14. Coelho, V.N., Coelho, I.M., Souza, M.J.F., Oliveira, T.A., Cota, L.P., Haddad, M.N., Mladenovic, N., Silva, R.C.P., Guimarães, F.G.: Hybrid self-adaptive evolution strategies guided by neighborhood structures for combinatorial optimization problems. Evol. Comput. 24(4), 637–666 (2016). https://doi.org/10.1162/EVCO_a_00187

    Article  Google Scholar 

  15. Coelho, V.N., Oliveira, T.A., Coelho, I.M., Coelho, B.N., Fleming, P.J., Guimarães, F.G., Ramalhinho, H., Souza, M.J., Talbi, E.G., Lust, T.: Generic pareto local search metaheuristic for optimization of targeted offers in a bi-objective direct marketing campaign. Comput. Oper. Res. 78, 578–587 (2017). https://doi.org/10.1016/j.cor.2016.09.008

    Article  MathSciNet  MATH  Google Scholar 

  16. Dai, Z., Dong, X., & Kang, J., Lianying, H.: Forecasting stock market returns: new technical indicators and two-step economic constraint method. North Am J Econ Financ 53, 101216. https://doi.org/10.1016/j.najef.2020.101216

  17. Derbentsev, V., Matviychuk, A., Soloviev, V.N.: Forecasting of cryptocurrency prices using machine learning. In: Advanced Studies of Financial Technologies and Cryptocurrency Markets, pp. 211–231. Springer (2020)

  18. Dubois, D., Prade, H.: A review of fuzzy set aggregation connectives. Inf. Sci. 36(1–2), 85–121 (1985)

    Article  MathSciNet  Google Scholar 

  19. Faloutsos, C., Flunkert, V., Gasthaus, J., Januschowski, T., Wang, Y.: Forecasting big time series: Theory and practice. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 3209–3210 (2019)

  20. Glover, F.W., Kochenberger, G.A.: Handbook of Metaheuristics, vol. 57. Springer, Berlin (2006)

    MATH  Google Scholar 

  21. Hamilton, J.D.: Time series analysis, vol. 2. Princeton University Press, Princeton (1994)

    Book  Google Scholar 

  22. Hansen, P., Mladenovic, N., Pérez, J.A.M.: Variable neighborhood search: methods and applications. 4OR Quart J. Belg. Fr. Ital. Oper. Res. Soc. 6, 319–360 (2008)

    Article  Google Scholar 

  23. Hong, T., Wilson, J., Xie, J.: Long term probabilistic load forecasting and normalization with hourly information. Smart Grid IEEE Trans. 5(1), 456–462 (2014)

    Article  Google Scholar 

  24. Hyndman, R.J., Koehler, A.B.: Another look at measures of forecast accuracy. Int. J. Forecast. 22(4), 679–688 (2006). https://doi.org/10.1016/j.ijforecast.2006.03.001

    Article  Google Scholar 

  25. Jeong, G., Park, S., Hwang, G.: Time series forecasting based day-ahead energy trading in microgrids: mathematical analysis and simulation. IEEE Access 8, 63885–63900 (2020)

    Article  Google Scholar 

  26. Kolter, J.Z., Johnson, M.J.: Redd: A public data set for energy disaggregation research. In: Workshop on Data Mining Applications in Sustainability (SIGKDD), San Diego, CA (2011)

  27. Koochaksaraei, R.H., Meneghini, I.R., Coelho, V.N., Guimarães, F.G.: A new visualization method in many-objective optimization with chord diagram and angular mapping. Knowledge-Based Syst. 138(Supplement C), 134–154 (2017). https://doi.org/10.1016/j.knosys.2017.09.035

    Article  Google Scholar 

  28. Livieris, I.E., Pintelas, E., Stavroyiannis, S., Pintelas, P.: Ensemble deep learning models for forecasting cryptocurrency time-series. Algorithms 13(5), 121 (2020)

    Article  MathSciNet  Google Scholar 

  29. Lust, T., Teghem, J.: Two-phase pareto local search for the biobjective traveling salesman problem. J. Heuristics 16, 475–510 (2010)

    Article  Google Scholar 

  30. Meneghini, I.R., Koochaksaraei, R.H., Guimarães, F.G., Gaspar-Cunha, A.: Information to the eye of the beholder: Data visualization for many-objective optimization. In: 2018 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8 (2018). https://doi.org/10.1109/CEC.2018.8477889

  31. Mladenovic, N., Hansen, P.: A variable neighborhood search. Comput. Oper. Res. 24, 1097–1100 (1997)

    Article  MathSciNet  Google Scholar 

  32. Nethercote, N., Seward, J.: Valgrind: a program supervision framework. Elect. Notes Theor. Comput. Sci. 89(2), 44–66 (2003)

    Article  Google Scholar 

  33. Oliveira, T.A., Gabrich, Y.B., Ramalhinho, H., Oliver, M., W Cohen, M., S Ochi, L., Gueye, S., Protti, F., A Pinto, A., VM Ferreira, D., et al.: Mobility, citizens, innovation and technology in digital and smart cities. Future Internet 12(2), 22 (2020)

  34. Oliveira, T.A., Oliver, M., Ramalhinho, H.: Challenges for connecting citizens and smart cities: Ict, e-governance and blockchain. Sustainability 12(7), 2926 (2020)

    Article  Google Scholar 

  35. Qiu, X., Suganthan, P.N., Amaratunga, G.A.: Ensemble incremental learning random vector functional link network for short-term electric load forecasting. Knowledge-Based Syst. 145, 182–196 (2018)

    Article  Google Scholar 

  36. Refaeilzadeh, P., Tang, L., Liu, H.: Cross-validation. In: Encyclopedia of database systems, pp. 532–538. Springer (2009)

  37. Rios, E., Ochi, L.S., Boeres, C., Coelho, V.N., Coelho, I.M., Farias, R.: Exploring parallel multi-gpu local search strategies in a metaheuristic framework. J. Parallel Distrib. Comput. 111, 39–55 (2018)

    Article  Google Scholar 

  38. Rodríguez, F., Florez-Tapia, A.M., Fontán, L., Galarza, A.: Very short-term wind power density forecasting through artificial neural networks for microgrid control. Renew. Energy 145, 1517–1527 (2020)

    Article  Google Scholar 

  39. Schürholz, D., Kubler, S., Zaslavsky, A.: Artificial intelligence-enabled context-aware air quality prediction for smart cities. J. Cleaner Prod. p. 121941 (2020)

  40. Stanojević, B., Glover, F.: A new approach to generate pattern-efficient sets of non-dominated vectors for multi-objective optimization. Inf. Sci. (2020)

  41. Sun, M., Feng, C., Zhang, J.: Multi-distribution ensemble probabilistic wind power forecasting. Renew. Energy 148, 135–149 (2020)

    Article  Google Scholar 

  42. Veit, A., Goebel, C., Tidke, R., Doblander, C., Jacobsen, H.A.: Household electricity demand forecasting: benchmarking state-of-the-art methods. In: Proceedings of the 5th International Conference on Future Energy Systems, e-Energy ’14, pp. 233–234. ACM, New York, NY, USA (2014). https://doi.org/10.1145/2602044.2602082

  43. Villalón, A., Rivera, M., Salgueiro, Y., Muñoz, J., Dragičević, T., Blaabjerg, F.: Predictive control for microgrid applications: a review study. Energies 13(10), 2454 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitor Nazário Coelho.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coelho, V.N., Koochaksaraei, R.H. Non-dominated solutions for time series learning and forecasting. Optim Lett 16, 395–408 (2022). https://doi.org/10.1007/s11590-021-01720-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-021-01720-5

Keywords

Navigation