Skip to main content

Advertisement

Log in

Overlap of Ecological Niche Breadth of Euglossa cordata and Eulaema nigrita (Hymenoptera, Apidae, Euglossini) Accessed by Pollen Loads and Species Distribution Modeling

  • Ecology, Behavior and Bionomics
  • Published:
Neotropical Entomology Aims and scope Submit manuscript

Abstract

Urban areas can serve as biodiversity refuges for pollinators because of the high diversity of available floral and nesting resources. However, it remains unclear what plant species commonly used for urban landscaping provide floral resources that pollinators actively use. Here, we integrate data from the pollen and species distribution models of two abundant euglossine bees—the large-bodied Eulaema nigrita (Lepeletier, 1841) and the small-bodied Euglossa cordata (Linnaeus, 1758)—in urban areas to investigate their overlap in diet breadth and distribution. We hypothesized that because bees with larger body sizes tend to have larger foraging areas, large-bodied bees would have a wider diet breath than small-bodied bees. Contrary to our hypothesis, we found that Eg. cordata has a wider diet breadth than El. nigrita with the former species showing higher diversity of pollen types collected (per pollen load and on average across pollen loads). Pollen grains from Solanum paniculatum and Tradescantia zebrina represented 63% of the diet of Eg. cordata, whereas pollen from S. paniculatum and Psidium guajava represented 87% of the diet of El. nigrita. After overlaying the distribution of both bee species and the three most important pollen resources, the distribution models revealed that these three plant species can co-occur with both euglossine bees throughout a large portion of eastern Brazil near the coast. Thus, we conclude S. paniculatum, T. zebrina, and P. guajava should be considered key plants for the maintenance of these two urban euglossine bee species. The results of this study provide important information for urban landscaping programs that aim to protect and preserve pollinators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aleixo KP, Faria LB, Groppo M, Castro MMN, Silva CI (2014) Spatiotemporal distribution of floral resources in a Brazilian city: implications for the maintenance of pollinators, especially bees. Urban For Urban Green 13:689–696

    Google Scholar 

  • Aleixo KP, Menezes C, Imperatriz-Fonseca VL, Silva CI (2016) Seasonal availability of floral resources and ambient temperature shape stingless bee foraging behavior (Scaptotrigona aff. depilis). Apidologie 48:117–127

    Google Scholar 

  • Anderson RP, Raza A (2010) The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: preliminary tests with montane rodents (genus Nephelomys) in Venezuela. J Biogeogr 37:1378–1393

    Google Scholar 

  • Angelieri CCS, Adams-Hosking C, Ferraz KMPMB, Souza MP, McAlpine CA (2016) Using species distribution models to predict potential landscape restoration effects on puma conservation. PLoS One 11:e0145232

    PubMed  PubMed Central  Google Scholar 

  • Añino Y, Parra-H A, Gálvez D (2019) Are Orchid Bees (Apidae: Euglossini) Good indicators of the state of conservation of Neotropical Forests? Sociobiology 66(1):194–197

    Google Scholar 

  • Araújo ED, Costa M, Chaud-Netto J, Fowler HG (2004) Body size and flight distance in stingless bees (Hymenoptera: Meliponini): inference of flight range and possible ecological implications. Braz J Biol 64:563–568

    PubMed  Google Scholar 

  • Arriaga ER, Hernández EM (1998) Resources foraged by Euglossa atroveneta (Apidae: Euglossinae) at Union Juárez, Chiapas, Mexico. A palynological study of larval feeding. Apidologie 29:347–359

    Google Scholar 

  • Bittar PB, Alves-dos-Santos I, Silva CI (2020) Incredible information that pollen can tell us about the bee plant interaction. In: Silva CI, Radaeski JN, Bauerman SG, Arena MV (eds) Atlas of pollen and plants used by bees. Consultoria Inteligente em Serviços Ecossistêmicos-CISE, Rio Claro, São Paulo, pp 79–87

    Google Scholar 

  • Borrell BJ (2005) Long tongues and loose niches: evolution of euglossine bees and their nectar flowers. Biotropica 37:664–669. https://doi.org/10.1111/j.1744-7429.2005.00084.x

    Article  Google Scholar 

  • Cane JH (2016) Adult pollen diet essential for egg maturation by a solitary Osmia bee. J Insect Physiol 95:105–109

    CAS  PubMed  Google Scholar 

  • Cane JH, Sipes S (2006) Characterizing floral specialization by bees: analytical methods and a revised lexicon for oligolecty. In: Waser NM, Ollerton J (eds) Plant–pollinator interactions: from specialization to generalization. The University of Chicago Press, Chicago, pp 99–122

    Google Scholar 

  • Carnaval AC, Moritz C (2008) Historical climate modelling predicts patterns of current biodiversity in the Brazilian Atlantic forest. J Biogeog8r 35:1187–1201. https://doi.org/10.1111/j.1365-2699.2007.01870.x

    Article  Google Scholar 

  • Carvalho AF, Del Lama MA (2015) Predicting priority areas for conservation from historical climate modelling: stingless bees from Atlantic Forest hotspot as a case study. J Insect Conserv 19:581–587. https://doi.org/10.1007/s10841-015-9780-7

    Article  Google Scholar 

  • Chiarenza AA, Mannio PD, Lunt DJ, Farnsworth A, Jones LA, Kelland SJ, Allison PA (2019) Ecological niche modelling does not support climatically-driven dinosaur diversity decline before the Cretaceous/Paleogene mass extinction. Nat Commun 10(1):1–14

    CAS  Google Scholar 

  • Cortopassi-Laurino M, Zillikens A, Steiner J (2009) Pollen sources of the orchid bee Euglossa annectans Dressler 1982 (Hymenoptera: Apidae, Euglossini) analyzed from larval provisions. Genet Mol Res 8:546–556

    CAS  PubMed  Google Scholar 

  • Crall JD, Ravi S, Mountcastle AM, Combes SA (2015) Bumblebee flight performance in cluttered environments: effects of obstacle orientation, body size and acceleration. J Exp Biol 218:2728–2737

    PubMed  Google Scholar 

  • Danforth BN, Minckley RL, Neff JL, Fawcett F (2019) The solitary bees: biology, evolution, conservation. Princeton University Press

  • Dressler RL (1982) Biology of the orchid Bees (Euglossini). Annu Rev Ecol Syst 13:373–394

    Google Scholar 

  • Eberhard FE, Cunze S, Kochmann J, Klimpel S (2020) Modelling the climatic suitability of Chagas disease vectors on a global scale. eLife 9:e52072. https://doi.org/10.7554/eLife.52072

  • Erdtman G (1960) The acetolized method. A revised description. Sven Bot 54:561–564

    Google Scholar 

  • Fand BB, Shashank PR, Suroshe SS, Chandrashekar K, Meshram NM, Timmanna HN (2020) Invasion risk of the South American tomato pinworm Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in India: predictions based on MaxEnt ecological niche modelling. Int J Trop Insect Sci 40: 561–571. 

  • Faria LB, Aleixo KP, Garófalo CA, Imperatriz-Fonseca VL, Silva CI (2012) Foraging of Scaptotrigona aff. depilis (Hymenoptera, Apidae) in an urbanized area: seasonality in resource availability and visited plants. Psyche 2012:630628. https://doi.org/10.1155/2012/630628

  • Ferraz KMPMB, Morato RG, Bovo AAA, Costa COR, Ribeiro YG, Paula RC, Desbiez ALJ, Angelieri CSC, Traynor-Holzer K (2020) Bridging the gap between researchers, conservation planners, and decision makers to improve species conservation decision-making. Conserv Sci Pract e330. https://doi.org/10.1111/csp2.330

  • Giannini TC, Acosta AL, Garófalo CA, Saraiva AM, Alves dos Santos I, Imperatriz-Fonseca VL (2012) Pollination services at risk: bee habitats will decrease owing to climate change in Brazil. Ecol Model 244:127–131

    Google Scholar 

  • Giannini TC, Acosta AL, Silva CI, Oliveira PEAM, Imperatriz-Fonseca VL, Saraiva AM (2013) Identifying the areas to preserve passion fruit pollination service in Brazilian Tropical Savannas under climate change. Agric Ecosyst Environ 171:39–46

    Google Scholar 

  • Greenleaf SS, Williams NM, Winfree R, Kremen C (2007) Bee foraging ranges and their relationships to body size. Oecologia 153:589–596

    PubMed  Google Scholar 

  • Hammer O, Harper DAT, Ryan PD (2001) Paleontological Statistics Software: package for Education and Data Analysis. Palaeontol Electron 4:1–9

    Google Scholar 

  • Hijmans RJ, Van Etten J (2015) Raster: Geographic data analysis and modeling. R package version 2, p 1–49

  • Hill MP, Bertelsmeier C, Clusella-Trullas S, Garnas J, Robertson MP, Terblanche JS (2016) Predicted decrease in global climate suitability masks regional complexity of invasive fruit fly species response to climate change. Biol Invasions 18:1105–1119. https://doi.org/10.1007/s10530-016-1078-5

    Article  Google Scholar 

  • Hutcheson K (1970) A test for comparing diversities based on the Shannon formula. J Theor Biol 29:151–154

    CAS  PubMed  Google Scholar 

  • Knight ME, Bishop S, Martin AP, Osborne JL, Hale RJ, Sanderson RA, Goulson D (2005) An interspecific comparison of foraging range and nest density of four bumble-bee (Bombus) species. Mol Ecol 14:1811–1820

    CAS  PubMed  Google Scholar 

  • Köppen W (1948) Climatologia: con un estudio de los climas de la tierra. Fondo de Cultura Econômica, México, p 478

    Google Scholar 

  • Liu B, Jiao Z, Ma J, Gao X, Xiao J, Hayat MA, Wang H (2019) Modelling the potential distribution of arbovirus vector Aedes aegypti under current and future climate scenarios in Taiwan, China. Pest Manag Sci 75(11):3076–3083

    CAS  PubMed  Google Scholar 

  • Lopes AV, Machado IC (1998) Floral biology and reproductive ecology of Clusia nemorosa (Clusiaceae) in northeastern Brazil. Plant Syst Evol 213:71–90

    Google Scholar 

  • López-Uribe MM, Oi CA, Del Lama MA (2008) Nectar-foraging behavior of Euglossine bees (Hymenoptera: Apidae) in urban areas. Apidologie 39:410–418

    Google Scholar 

  • López-Uribe MM, Zamudio KR, Cardoso CF, Danforth BN (2014) Climate, physiological tolerance and sexbiased dispersal shape genetic structure of Neotropical orchid bees. Mol Ecol 23:1874–1 890. https://doi.org/10.1111/mec.12689

    Article  PubMed  Google Scholar 

  • López-Uribe MM, Jha S, Soro A (2019) A trait-based approach to predict population genetic structure in bees. Mol Ecol 28(8):1919–1929

    PubMed  Google Scholar 

  • Magurran AE (2004) Measuring biological diversity. Wiley-Blackwell Publ, Oxford, p 264

    Google Scholar 

  • Maia-Silva C, Imperatriz-Fonseca VL, Silva CI, Hrncir M (2014) Environmental windows for foraging activity in stingless bees, Melipona subnitida Ducke and Melipona quadrifasciata Lepeletier (Hymenoptera: Apidae: Meliponini). Sociobiology 61:378–385

    Google Scholar 

  • Mascarenhas R, Miyaki CY, Dobrovolski R, Batalha-Filho H (2019) Late Pleistocene climate change shapes population divergence of an Atlantic Forest passerine: a model-based phylogeographic hypothesis test. J Ornithol 160(3):733–748

    Google Scholar 

  • Maurizio A, Louveaux J (1965) Pollens de plantes mellifères d’Europe. Union des groupements apicoles français, Paris, p 148

    Google Scholar 

  • McIntyre NE (2000) Ecology of urban arthropods: a review and a call to action. Ann Entomol Soc Am 93:825–835

    Google Scholar 

  • McKinney ML (2008) Effects of urbanization on species richness: a review of plants and animals. Urban Ecosyst 11:161–176

    Google Scholar 

  • Menchetti M, Guéguen M, Talavera G (2019) Spatio-temporal ecological niche modelling of multigenerational insect migrations. Proc R Soc B 286(1910):20191583

    PubMed  Google Scholar 

  • Michener CD (2007) The Bees of the World. The Johns Hopkins University Press, Baltimore, p 992

    Google Scholar 

  • Miranda EA, Carvalho AF, Andrade-Silva ACR, Silva CI, Del Lama MA (2015) Natural history and biogeography of Partamona rustica, an endemic bee in dry forests of Brazil. Insect Soc 62:255–263

    Google Scholar 

  • Miranda EA, Batalha-Filho H, Congrains C & Carvalho AF et al (2016) Phylogeography of Partamona rustica (Hymenoptera, Apidae), an endemic stingless bee from the neotropical dry forest diagonal, PLOSONE 11(10):e0164441, https://doi.org/10.1371/journal.pone.0164441.

  • Miranda EA, Carvalho AF, Gomes-Miranda JJ, Souza CR, Costa MA (2019) Priority areas for conservation of orchid bees (Apidae, Euglossini) in the Atlantic Forest. J Insect Conserv 23:613–621

    Google Scholar 

  • Montero I, Tormo Molina R (1990) Análisis polínico de mieles de cuatro zonas de montaña de Extremadura. Nacional Asociación Palinologica Lengua Española 5:71–78

    Google Scholar 

  • Musher LJ, Galante PJ, Thom G, Huntley JW, Blair ME (2020) Shifting ecosystem connectivity during the Pleistocene drove diversification and gene-flow in a species complex of Neotropical birds (Tityridae: Pachyramphus). J Biogeogr 47:1714–1726. https://doi.org/10.1111/jbi.13862

    Article  Google Scholar 

  • Nemésio A, Silveira FA (2007) Orchid bee fauna (Hymenoptera: Apidae: Euglossina) of Atlantic Forest fragments inside an urban area in southeastern Brazil. Neotrop Entomol 36:186–191

    PubMed  Google Scholar 

  • Oi CA, López-Uribe MM, Cervini M, Del Lama MA (2013) Non-lethal method of DNA sampling in euglossine bees supported by mark–recapture experiments and microsatellite genotyping. J Insect Conserv 17:1071–1079

    Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB et al(2015) Vegan: community ecology package. R package version 2 2–1

  • Orr MC, Hughes AC, Chesters D, Pickering J, Zhu CD, Ascher JS (2020) Global patterns and drivers of bee distribution. Curr Biol 31:1–8

    Google Scholar 

  • Ospina-Torres R, Montoya-Pfeiffer PM, Parra-H A, Solarte V, Otero JP (2015) Interactions networks and the use of floral resources by male orchid bees (Hymenoptera: Apidae: Euglossini) in a primary rain forests of the Chocó Region (Colombia). Rev Biol Trop 63:647–658

    PubMed  Google Scholar 

  • Otero JP, Campuzano AM, Zuluaga PA, Caetano CM (2014) Pollen carried by Euglossa nigropilosa Moure (Apidae: Euglossinae) at La Planada Nature Reserve, Nariño, Colombia. Bol Mus Entomol Univ Val 15:1–6

    Google Scholar 

  • Pearson RG (2010) Species’ distribution modeling for conservation educators and practitioners. Lessons Conserv 3:54–89

    Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Google Scholar 

  • Pielou EC (1966) The measurement of diversity in different types of biological collections. J Trop Ecol 13:131–144

    Google Scholar 

  • Pinto GS, Silva CI, Freitas BM, Lima-Verde LW, Cavalcante MC, Loiola MI (2020) Contributions to the study of ecological interactions between Euglossini bees and urbanized flora. In: Silva CI, Radaeski JN, Bauerman SG, Arena MV (eds) Atlas of pollen and plants used by bees. Consultoria Inteligente em Serviços Ecossistêmicos-CISE, Rio Claro, São Paulo, pp 61–67

    Google Scholar 

  • Potts S, Imperatriz-Fonseca V, Ngo H et al (2016) Safeguarding pollinators and their values to human well-being. Nature 540:220–229. https://doi.org/10.1038/nature20588

    Article  CAS  Google Scholar 

  • QGIS Development Team (2009). QGIS Geographic Information System. Open Source Geospatial Foundation. http://qgis.osgeo.org

  • Ramírez S, Dressler RL, Ospina M (2002) Abejas euglosinas (Hymenoptera: Apidae) de la Región Neotropical: listado de especies con notas sobre su biología. Biota Colombiana 3:7–118

    Google Scholar 

  • Rosauer D, Laffan SW, Crisp MD, Donnellan SC, Cook LG (2009) Phylogenetic endemism: a new approach for identifying geographical concentrations of evolutionary history. Mol Ecol 18:4061–4072

    PubMed  Google Scholar 

  • Roubik DW, Hanson PE (2004) Orchid bees from tropical America. Biology and field guide. INBio Press, Santo Domingo, p 370

    Google Scholar 

  • Roulston TH, Cane JH, Buchmann SL (2000) What governs protein content of pollen: pollinator preferences, pollen-pistil interactions, or phylogeny? Ecol Monogr 70:617–643

    Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana, p 144

    Google Scholar 

  • Silva CI, Solange CA, Sofia SH, Moscheta IS (2007) Diversidade de abelhas em Tecoma stans (L.) Kunth (Bignoniaceae): Importância na polinização e produção de frutos. Neotrop Entomol 36:331–341

    PubMed  Google Scholar 

  • Silva CI, Bordon NG, Rocha Filho LC, Garófalo CA (2012) The importance of plant diversity in maintaining the pollinator bee, Eulaema nigrita (Hymenoptera: Apidae) in sweet passion fruit fields. Rev Biol Trop 60:1553–1565

    PubMed  Google Scholar 

  • Silva CI, Imperatriz-Fonseca VL, Groppo M, Bauermann SG, Saraiva AA et al (2014) Catálogo Polínico das Plantas Usadas por Abelhas no Campus da USP de Ribeirão Preto. Holos, Ribeirão Preto, p 63

    Google Scholar 

  • Silva DP, Macêdo ACBA, Ascher JS, De Marco JP (2015a) Range increase of a Neotropical orchid bee under future scenarios of climate change. J Insect Conserv 19:901–910. https://doi.org/10.1007/s10841-015-9807-0

    Article  Google Scholar 

  • Silva DP, Varela S, Nemésio A, De Marco JP (2015b) Adding biotic interactions into paleodistribution models: a host-cleptoparasite complex of Neotropical orchid bees. PLoS One 10(6):e0129890. https://doi.org/10.1371/journal.pone.0129890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva CI, Hirotsu CM, Pacheco-Filho AJS, Queiroz EP, Garófalo CA (2017) Is the maximum reproductive rate of Centris analis (Hymenoptera, Apidae, Centridini) associated with floral resource availability? Arthropod Plant Interact 11:389–402

    Google Scholar 

  • Silva CI, Radaeski JN, Bauerman SG, Arena MV (2020) Atlas of pollen and plants used by bees. ed. Consultoria Inteligente em Serviços Ecossistêmicos-CISE, Rio Claro, São Paulo, Brazil, 260 p.

  • Singer RB, Sazima M (2001) Flower morphology and pollination mechanism in three sympatric Goodyerinae orchids from southeastern Brazil. Ann Bot 88:989–997

    Google Scholar 

  • Soley-Guardia M, Radosavljevic A, Rivera JL, Anderson RP (2014) The effect of spatially marginal localities in modelling species niches and distributions. J Biogeogr 41:1390–1401

    Google Scholar 

  • Sydney NV, Gonçalves RB, Faria LRR (2010) Padrões espaciais na distribuição de abelhas Euglossina (Hymenoptera, Apidae) da região Neotropical. Pap Avulsos Zool (São Paulo) 50:667–679

    Google Scholar 

  • Vaudo AD, Biddinger DJ, Sickel W, Keller A, López-Uribe MM (2020) Introduced bees (Osmia cornifrons) collect pollen from both coevolved and novel host-plant species within their family-level phylogenetic preferences. R Soc Open Sci 7(7):200225

    PubMed  PubMed Central  Google Scholar 

  • Villanueva-Gutierrez R, Quezada-Euán J, Eltz T (2013) Pollen diets of two sibling orchid bee species, Euglossa, in Yucatán, southern Mexico. Apidologie 44:440–446

    CAS  Google Scholar 

  • Werneck FP, Costa GC, Colli GR, Prado DE, Sites JW Jr (2011) Revisiting the historical distribution of Seasonally Dry Tropical Forests: new insights based on palaeodistribution modelling and palynological evidence. Glob Ecol Biogeogr 20:272–288

    Google Scholar 

  • Werneck FP, Nogueira C, Colli GR, Sites JW Jr, Costa GC (2012) Climatic stability in the Brazilian Cerrado: implications for biogeographical connections of South American savannas, species richness and conservation in a biodiversity hotspot. J Biogeogr 39:1695–1706. https://doi.org/10.1111/j.1365-2699.2012.02715.x

    Article  Google Scholar 

  • Wisz MS, Pottier J, Kissling WD, Pellissier L et al (2013) The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biol Rev 88(1):15–30

    PubMed  Google Scholar 

Download references

Acknowledgements

CIS thanks the scholarship from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). BMF thanks CNPq for his Productivity Research Grant #308948/2016-5; EAM thanks CNPq for his postdoctoral fellowship (154912/2016-6 and 151193/2019-3 PDJ-CNPq) and FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo, Processo 2012/23342-1). MADL, CAO, and MMLU thank FAPESP (Processo 2004/15801-0).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Data collection was carried out by MMLU, CAO, and MADL. Material preparation and data analysis were performed by EAM, INL, CAO, and CIS. The first draft of the manuscript was written by all authors, which commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Elder Assis Miranda.

Additional information

Edited by Fernando B Noll

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 255 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miranda, E.A., Lima, I.d., Oi, C.A. et al. Overlap of Ecological Niche Breadth of Euglossa cordata and Eulaema nigrita (Hymenoptera, Apidae, Euglossini) Accessed by Pollen Loads and Species Distribution Modeling. Neotrop Entomol 50, 197–207 (2021). https://doi.org/10.1007/s13744-020-00847-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13744-020-00847-x

Keywords

Navigation