Skip to main content
Log in

Cluster Variation Method Analysis of Correlations and Entropy in BCC Solid Solutions

  • Topical Collection: Innovations in High Entropy Alloys and Bulk Metallic Glasses
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Solid solutions occur when multiple chemical species share sites of a common crystal lattice. Although the single site occupation is random, chemical interaction preferences bias the occupation probabilities of neighboring sites, and this bias reduced the entropy of mixing below its ideal value. Sufficiently strong bias leads to symmetry-breaking phase transitions. We apply the cluster variation method to explore solid solutions on body centered cubic lattices in the context of two specific compounds that exhibit opposite ordering trends. Employing density functional theory to model the energetics, we show that CuZn exhibits an order-disorder transition to the CsCl prototype structure, while AlLi instead takes the NaTl prototype structure, and we evaluate their temperature-dependent order parameters, correlations and entropies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Kikuchi, Phys. Rev. 81, 988 (1951)

    Article  Google Scholar 

  2. D. de Fontaine, Solid State Phys. 34, 73 (1979)

    Article  Google Scholar 

  3. D. de Fontaine, Solid State Phys. 47, 33 (1994)

    Article  CAS  Google Scholar 

  4. G. Inden, Atomic Ordering, in Chap. 8 in Transformations in Materials. ed. by G.. Kostorz (Wiley, New York, 2005), pp. 519–581

    Google Scholar 

  5. P.E.A. Turchi, M. Sluiter, F.J. Pinski, D.D. Johnson, D.M. Nicholson, G.M. Stocks, J.B. Staunton, Phys. Rev. Lett. 67, 1779 (1991)

    Article  CAS  Google Scholar 

  6. M. Asta, D. de Fontaine, M. van Schilfgaarde, M. Sluiter, M. Methfessel, Phys. Rev. B 46, 5055 (1992)

    Article  CAS  Google Scholar 

  7. J.M. Sanchez, J.D. Becker, Prog. Theor. Phys. Suppl. 115, 131 (1994)

    Article  CAS  Google Scholar 

  8. R. McCormack, D. de Fontaine, Phys. Rev. B 54, 9746 (1996)

    Article  CAS  Google Scholar 

  9. M.H.F. Sluiter, C. Colinet, A. Pasturel, Phys. Rev. B 73, 174204 (2006)

    Article  Google Scholar 

  10. Y. Yamada, T. Mohri, J. Phys, Condens. Matter 32, 174002 (2020)

    Article  CAS  Google Scholar 

  11. P. Turchi, V. Drchal, J. Kudrnovsky, A. Perron, J. Phase Equilib. Diffus. 41, 737 (2020)

    Article  CAS  Google Scholar 

  12. H. Ackermann, G. Inden, R. Kikuchi, Acta Metall. 37, 1 (1989)

    Article  CAS  Google Scholar 

  13. C. Felser, A. Hirohata (eds.), Heusler Alloys: Properties, Growth, Applications (Springer, Berlin, 2016)

    Google Scholar 

  14. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004)

    Article  CAS  Google Scholar 

  15. B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375–77, 213 (2004)

    Article  Google Scholar 

  16. J.W.D. Connolly, A.R. Williams, Phys. Rev. B 27, 5169 (1983)

    Article  CAS  Google Scholar 

  17. A. van de Walle, M. Asta, G. Ceder, CALPHAD 26(4), 539 (2002)

    Article  Google Scholar 

  18. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  CAS  Google Scholar 

  19. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    Article  CAS  Google Scholar 

  20. G. Kresse, J. Hafner, Phys. Rev. B 48, 13115 (1993)

    Article  CAS  Google Scholar 

  21. S. Allen, J. Cahn, Acta Metall. 20, 423 (1972)

    Article  CAS  Google Scholar 

  22. J. Kanamori, Y. Kakehashi, J. Phys. Colloq. 38, C7-724 (1977)

    Article  Google Scholar 

  23. M. Widom, Metall. Mater. Trans. A 47, 3306 (2016)

    Article  CAS  Google Scholar 

  24. R. Hartley, Bell Syst. Tech. J. 7, 535 (1928)

    Article  Google Scholar 

  25. C.E. Shannon, Bell Syst. Tech. J. 27(3), 379 (1948)

    Article  Google Scholar 

  26. W.L. Bragg, E.J. Williams, Proc. R. Soc. Lond. A 145, 699 (1934)

    Article  CAS  Google Scholar 

  27. H.A. Bethe, Proc. R. Soc. Lond. A 150, 552 (1935)

    Article  CAS  Google Scholar 

  28. E.A. Guggenheim, Proc. R. Soc. Lond. A 183, 213 (1944)

    Article  CAS  Google Scholar 

  29. J.S. Yedidia, W.T. Freeman, Y. Weiss, IEEE Trans. Inf. Theory 51, 2282 (2005)

    Article  Google Scholar 

  30. A. Pelizzola, J. Phys. A 38, R309 (2005)

    Article  Google Scholar 

  31. R. Kikuchi, Physica A 142, 321 (1987)

    Article  Google Scholar 

  32. R. Kikuchi, J. Chem. Phys. 60, 1071 (1974)

    Article  CAS  Google Scholar 

  33. D. Vul, D. de Fontaine, Mater. Res. Soc. Symp. Proc. 291, 401 (1993)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Department of Energy under Grant DE-SC0014506.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Widom.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 26, 2020; accepted February 1, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoffman, N., Widom, M. Cluster Variation Method Analysis of Correlations and Entropy in BCC Solid Solutions. Metall Mater Trans A 52, 1551–1558 (2021). https://doi.org/10.1007/s11661-021-06182-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06182-z

Navigation