Skip to main content
Log in

An analytical approach for calculating natural frequencies of finite one-dimensional acoustic metamaterials

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In this paper, an analytical matrix method is presented to drive closed-form characteristic equations for natural frequencies of finite monoatomic and diatomic metamaterials with various boundary conditions. Here, we extend the matrix method introduced by Louck for monoatomic lattice chains. The proposed method is used to calculate the vibration frequencies of the monoatomic metamaterials with fixed–fixed, fixed-free and free-free boundary conditions. In addition, the natural frequencies of fixed–fixed diatomic metamaterials are calculated. The existence of band gaps in the frequencies of the metamaterials is numerically shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yao S, Zhou X, Hu G (2008) Experimental study on negative effective mass in a 1D mass–spring system. New J Phys 10:043020

    Article  Google Scholar 

  2. Huang HH, Sun CT, Huang GL (2009) On the negative effective mass density in acoustic metamaterials. Int J Eng Sci 47:610–617

    Article  Google Scholar 

  3. Cselyuszka N, Sečujski M, Crnojević-Bengin V (2015) Novel negative mass density resonant metamaterial unit cell. Phys Lett A 379:33–36

    Article  Google Scholar 

  4. Henyš P, Vomáčko V, Ackermann M, Sobotka J, Solfronk P, Šafka J, Čapek L (2019) Normal and shear behaviours of the auxetic metamaterials: homogenisation and experimental approaches. Meccanica 54:831–839

    Article  Google Scholar 

  5. Shaat M, Wagih A (2020) Hinged-3D metamaterials with giant and strain-independent Poisson’s ratios. Sci Rep 10:2228

    Article  Google Scholar 

  6. Wang X (2014) Dynamic behaviour of a metamaterial system with negative mass and modulus. Int J Solids Struct 51:1534–1541

    Article  Google Scholar 

  7. Sridhar A, Liu L, Kouznetsova VG, Geers MGD (2018) Homogenized enriched continuum analysis of acoustic metamaterials with negative stiffness and double negative effects. J Mech Phys Solids 119:104–117

    Article  MathSciNet  Google Scholar 

  8. Li QQ, He ZC, Li E (2019) Dissipative multi-resonator acoustic metamaterials for impact force mitigation and collision energy absorption. Acta Mech 230:2905–2935

    Article  Google Scholar 

  9. Xu X, Barnhart MV, Fang X, Wen J, Chen Y, Huang G (2019) A nonlinear dissipative elastic metamaterial for broadband wave mitigation. Int J Mech Sci 164:105159

    Article  Google Scholar 

  10. Hu G, Tang L, Das R, Gao S, Liu H (2017) Acoustic metamaterials with coupled local resonators for broadband vibration suppression. AIP Adv 7:025211

    Article  Google Scholar 

  11. Basta EE, Ghommem M, Emam SA (2020) Vibration suppression and optimization of conserved-mass metamaterial beam. Int J Nonlinear Mech 120:103360

    Article  Google Scholar 

  12. Wagner PR, Dertimanis VK, Antoniadis IA, Chatzi EN (2016) On the feasibility of structural metamaterials for seismic-induced vibration mitigation. Int J Earthq Impact Eng 1:20–56

    Article  Google Scholar 

  13. Yang X, Yin J, Yu G, Peng L, Wang N (2015) Acoustic superlens using Helmholtz-resonator-based metamaterials. Appl Phys Lett 107:193505

    Article  Google Scholar 

  14. Chen M, Jiang H, Zhang H, Li D, Wang Y (2018) Design of an acoustic superlens using single-phase metamaterials with a star-shaped lattice structure. Sci Rep 8:1861

    Article  Google Scholar 

  15. Szajek K, Sumelka W (2019) Discrete mass-spring structure identification in nonlocal continuum space-fractional model. Eur Phys J Plus 134:448

    Article  Google Scholar 

  16. Failla G, Ghavanloo E (2021) Nonlocal approaches to the dynamics of metamaterials. In: Ghavanloo et al (eds) Size-Dependent continuum mechanics approaches. Springer, Berlin

    Google Scholar 

  17. Huang HH, Sun CT (2012) Anomalous wave propagation in a one-dimensional acoustic metamaterial having simultaneously negative mass density and Young’s modulus. J Acoust Soc Am 132:2887–2895

    Article  Google Scholar 

  18. Li B, Tan KT (2016) Asymmetric wave transmission in a diatomic acoustic/elastic metamaterial. J Appl Phys 120:075103

    Article  Google Scholar 

  19. Bacigalupo A, Gambarotta L (2017) Wave propagation in non-centrosymmetric beam-lattices with lumped masses: discrete and micropolar modeling. Int J Solids Struct 118:128–145

    Article  Google Scholar 

  20. Bacigalupo A, Lepidi M (2018) Acoustic wave polarization and energy flow in periodic beam lattice materials. Int J Solids Struct 147:183–203

    Article  Google Scholar 

  21. Lepidi M, Bacigalupo A (2019) Wave propagation properties of one-dimensional acoustic metamaterials with nonlinear diatomic microstructure. Nonlinear Dyn 98:2711–2735

    Article  Google Scholar 

  22. Jaberzadeh M, Li B, Tan KT (2019) Wave propagation in an elastic metamaterial with anisotropic effective mass density. Wave Motion 89:131–141

    Article  MathSciNet  Google Scholar 

  23. Wang YF, Liang JW, Chen AL, Wang YS, Laude V (2019) Wave propagation in one-dimensional fluid-saturated porous metamaterials. Phys Rev B 99:134304

    Article  Google Scholar 

  24. Ghavanloo E, Fazelzadeh SA (2019) Wave propagation in one-dimensional infinite acoustic metamaterials with long-range interactions. Acta Mech 230:4453–4461

    Article  MathSciNet  Google Scholar 

  25. Zhu R, Huang GL, Hu GK (2012) Effective dynamic properties and multi-resonant design of acoustic metamaterials. J Vib Acoust 34:031006

    Article  Google Scholar 

  26. Sugino C, Leadenham S, Ruzzene M, Erturk A (2016) On the mechanism of bandgap formation in locally resonant finite elastic metamaterials. J Appl Phys 120:134501

    Article  Google Scholar 

  27. Al Ba’ba’a H, Nouh M, Singh T (2017) Formation of local resonance band gaps in finite acoustic metamaterials: a closed-form transfer function model. J Sound Vib 410:429–446

    Article  Google Scholar 

  28. Shen XH, Sun CT, Barnhart MV, Huang GL (2018) Analysis of dynamic behavior of the finite elastic metamaterial-based structure with frequency-dependent properties. J Vib Acoust 140:031012

    Article  Google Scholar 

  29. Al Ba’ba’a H, DePauw D, Singh T, Nouh M (2018) Dispersion transitions and pole-zero characteristics of finite inertially amplified acoustic metamaterials. J Appl Phys 123:105106

    Article  Google Scholar 

  30. Mu D, Shu H, An S, Zhao L (2020) Free and steady forced vibration characteristics of elastic metamaterial beam. AIP Adv 10(03530):4

    Google Scholar 

  31. Failla G, Santoro R, Burlon A, Russillo AF (2020) An exact approach to the dynamics of locally-resonant beams. Mech Res Commun 103:103460

    Article  Google Scholar 

  32. El-Borgi S, Fernandes R, Rajendran P, Yazbeck R, Boyd JG, Lagoudas DC (2020) Multiple bandgap formation in a locally resonant linear metamaterial beam: theory and experiments. J Sound Vib 488:115647

    Article  Google Scholar 

  33. Louck JD (1962) Exact normal modes of oscillation of a linear chain of identical particles. Am J Phys 30:585–590

    Article  Google Scholar 

  34. Williams KS (1991) The nth power of a 2×2 matrix. Math Mag 65:336–336

    Article  Google Scholar 

Download references

Acknowledgements

This study is dedicated to Prof. Elias C. Aifantis on occasion of his 70th birthday.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmaeal Ghavanloo.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghavanloo, E., Fazelzadeh, S.A. An analytical approach for calculating natural frequencies of finite one-dimensional acoustic metamaterials. Meccanica 56, 1819–1829 (2021). https://doi.org/10.1007/s11012-021-01332-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-021-01332-4

Keywords

Navigation