Skip to main content
Log in

Thermal Cycling Behavior of Selective Laser-Remelted Thermal Barrier Coatings with Different Laser Dot Distances

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The two-layer structured YSZ/NiCrAlY coatings were modified with dot shape by laser remelting. The microstructure, phase composition and thermal cycling behaviors of the as-sprayed and laser-treated coatings with different laser dot distances were investigated. The thermal cycling behaviors of the as-sprayed and laser-treated coatings were studied systematically at 1000 °C. The results indicated that the coating with 3 mm distance between the laser-treated zone, namely the dot distance, showed the longest thermal cycling lifetimes, which was approximately 2.5 times as much as that of the as-sprayed coating. For one thing, the columnar grains and segmented cracks in the dot units were beneficial for accommodating the thermal stresses of coatings during thermal cycling. For another, a certain number of microcracks in the dot units could release the driving force for crack propagation, namely the elastic energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K. Bobzin, L.D. Zhao, W. Wietheger and T. Konigstein, Key Influencing Factors for the Thermal Shock Resistance of La2Zr2O7-Based Multilayer TBCs, Surf. Coat. Technol., 2020, 396, p 125951.

    Article  CAS  Google Scholar 

  2. X.Q. Cao, R. Vassen and D. Stoever, Ceramic Materials for Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2004, 24(1), p 1–10.

    Article  CAS  Google Scholar 

  3. W.U. de Goes, N. Markocsan, M. Gupta, R. Vassen, T. Matsushita and K. Illkova, Thermal Barrier Coatings with Novel Architectures for Diesel Engine Applications, Surf. Coat. Technol., 2020, 396, p 125950.

    Article  Google Scholar 

  4. S. Morelli, V. Testa, G. Bolelli, O. Ligabue, E. Molinari, N. Antolotti and L. Lusvarghi, CMAS Corrosion of YSZ Thermal Barrier Coatings Obtained by Different Thermal Spray Processes, J. Eur. Ceram. Soc., 2020, 40(12), p 4084–4100.

    Article  CAS  Google Scholar 

  5. M.C. Shi, Z.L. Xue, Z.Y. Zhang, X.J. Ji, E.S. Byon and S.H. Zhang, Effect of Spraying Powder Characteristics on Mechanical and Thermal Shock Properties of Plasma-Sprayed YSZ Thermal Barrier Coating, Surf. Coat. Technol., 2020, 395, p 125913.

    Article  CAS  Google Scholar 

  6. P.P. Zhang, X.F. Zhang, F.H. Li, Z.H. Zhang, Y.L. Wang, H. Li, L.Q. Ren and M. Liu, Hot Corrosion Behavior of YSZ Thermal Barrier Coatings Modified by Laser Remelting and Al Deposition, J. Therm. Spray Technol., 2019, 28(6), p 1225–1238.

    Article  Google Scholar 

  7. G.H. Meng, B.Y. Zhang, H. Liu, G.J. Yang, T. Xu, C.X. Li and C.J. Li, Highly Oxidation Resistant and Cost Effective MCrAlY Bond Coats Prepared by Controlled Atmosphere Heat Treatment, Surf. Coat. Technol., 2018, 347, p 54–65.

    Article  CAS  Google Scholar 

  8. F. Ghadami, A.S.R. Aghdam and S. Ghadami, Preparation, Characterization and Oxidation Behavior of CeO2-Gradient NiCrAlY Coatings Applied by HVOF Thermal Spraying Process, Ceram. Int., 2020, 46(12), p 20500–20509.

    Article  CAS  Google Scholar 

  9. K. Slamecka, D. Jech, L. Klakurkova, S. Tkachenko, M. Remesova, P. Gejdos and L. Celko, Thermal Cycling Damage in Pre-oxidized Plasma-Sprayed MCrAlY plus YSZ Thermal Barrier Coatings: Phenomenon of Multiple Parallel Delamination of the TGO Layer, Surf. Coat. Technol., 2020, 384, p 125328.

    Article  CAS  Google Scholar 

  10. D. Liu, C. Rinaldi and P.E.J. Flewitt, Effect of Substrate Curvature on the Evolution of Microstructure and Residual Stresses in EBPVD-TBC, J. Eur. Ceram. Soc., 2015, 35(9), p 2563–2575.

    Article  CAS  Google Scholar 

  11. X.F. Zhang, K.S. Zhou, C.M. Deng, M. Liu, Z.Q. Deng, C.G. Deng and J.B. Song, Gas-Deposition Mechanisms of 7YSZ Coating Based on Plasma Spray-Physical Vapor Deposition, J. Eur. Ceram. Soc., 2016, 36(3), p 697–703.

    Article  Google Scholar 

  12. Z.Y. Piao, B.S. Xu, H.D. Wang and X.X. Yu, Rolling Contact Fatigue Behavior of Thermal-Sprayed Coating: A Review, Crit. Rev. Solid State, 2020, 45(6), p 429-456.

    Google Scholar 

  13. E.J. Gildersleeve and S. Sampath, Process-Geometry Interplay in the Deposition and Microstructural Evolution of 7YSZ Thermal Barrier Coatings by Air Plasma Spray, J. Therm. Spray Technol., 2020, 29(4), p 560–573.

    Article  Google Scholar 

  14. F.F. Zhou, Y. Wang, Z.Y. Cui, L. Wang, J.F. Gou, Q.W. Zhang and C.H. Wang, Thermal Cycling Behavior of Nanostructured 8YSZ, SZ/8YSZ and 8CSZ/8YSZ Thermal Barrier Coatings Fabricated by Atmospheric Plasma Spraying, Ceram. Int., 2017, 43(5), p 4102–4111.

    Article  CAS  Google Scholar 

  15. S.T. Masoule, Z. Valefi, N. Ehsani and H.Q. Lavasani, Thermal Insulation and Thermal Shock Behavior of Conventional and Nanostructured Plasma-Sprayed TBCs, J. Therm. Spray Technol., 2016, 25(8), p 1684–1691.

    Article  Google Scholar 

  16. J.S. Wang, J.B. Sun, J.Y. Yuan, Q.S. Jing, S.J. Dong, B. Liu, H. Zhang, L.H. Deng, J.N. Jiang, X. Zhou and X.Q. Cao, Phase Stability, Thermo-Physical Properties and Thermal Cycling Behavior of Plasma-Sprayed CTZ, CTZ/YSZ Thermal Barrier Coatings, Ceram. Int., 2018, 44(8), p 9353–9363.

    Article  CAS  Google Scholar 

  17. Y. Feng, T.S. Dong, G.L. Li, R. Wang, G.Z. Ma, X.W. Zhao and Q. Liu, The Roles of Stress in the Thermal Shock Failure of YSZ TBCs Before and After Laser Remelting, J. Alloys Compd., 2020, 828, p 1–11.

    Google Scholar 

  18. Z. Soleimanipour, S. Baghshahi and R. Shoja-razavi, Improving the Thermal Shock Resistance of Thermal Barrier Coatings Through Formation of an In Situ YSZ/Al2O3 Composite via Laser Cladding, J. Mater. Eng. Perform., 2017, 26(4), p 1890–1899.

    Article  CAS  Google Scholar 

  19. R. Ghasemi, R. Shoja-Razavi, R. Mozafarinia and H. Jamali, The Influence of Laser Treatment on Thermal Shock Resistance of Plasma-Sprayed Nanostructured Yttria Stabilized Zirconia Thermal Barrier Coatings, Ceram. Int., 2014, 40(1), p 347–355.

    Article  CAS  Google Scholar 

  20. Z.J. Fan, K.D. Wang, X. Dong, W.Q. Duan, X.S. Mei, W.J. Wang, J.L. Cui and J. Lv, Influence of Columnar Grain Microstructure on Thermal Shock Resistance of Laser Re-melted ZrO2-7 wt.% Y2O3 Coatings and Their Failure Mechanism, Surf. Coat. Technol., 2015, 277, p 188–196.

    Article  CAS  Google Scholar 

  21. J.H. Lee, P.C. Tsai and C.L. Chang, Microstructure and Thermal Cyclic Performance of Laser-Glazed Plasma-Sprayed Ceria-Yttria-Stabilized Zirconia Thermal Barrier Coatings, Surf. Coat. Technol., 2008, 202(22–23), p 5607–5612.

    Article  CAS  Google Scholar 

  22. L. Wang, X.H. Zhong, F. Shao, J.X. Ni, J.S. Yang, S.Y. Tao and Y. Wang, What is the Suitable Segmentation Crack Density for Atmospheric Plasma Sprayed Thick Thermal Barrier Coatings with the Improved Thermal Shock Resistance?, Appl. Surf. Sci., 2018, 431, p 101–111.

    Article  CAS  Google Scholar 

  23. F. Chang, K.S. Zhou, X. Tong, L.P. Xu, X.F. Zhang and M. Liu, Microstructure and Thermal Shock Resistance of the Peg-Nail Structured TBCs Treated by Selective Laser Modification, Appl. Surf. Sci., 2014, 317, p 598–606.

    Article  CAS  Google Scholar 

  24. P.P. Zhang, F.H. Li, X.F. Zhang, Z.H. Zhang, F.F. Zhou, L.Q. Ren and M. Liu, Thermal Shock Resistance of Thermal Barrier Coatings with Different Surface Shapes Modified by Laser Remelting, J. Therm. Spray Technol., 2019, 28(3), p 417–432.

    Article  CAS  Google Scholar 

  25. P.P. Zhang, F.H. Li, X.F. Zhang, Z.H. Zhang, C.L. Tan, L.Q. Ren, Y.L. Wang, W.Y. Ma and M. Liu, Effect of Bionic Unit Shapes on Solid Particle Erosion Resistance of ZrO2-7wt%Y2O3 Thermal Barrier Coatings Processed by Laser, J. Bionic Eng., 2018, 15(3), p 545–557.

    Article  Google Scholar 

  26. P.P. Zhang, X.F. Zhang, F.H. Li, Z.H. Zhang, H. Li, Y.L. Wang, L.Q. Ren and M. Liu, Effects of Selective Laser Modification and Al Deposition on the Hot Corrosion Resistance of Ceria and Yttria-Stabilized Zirconia Thermal Barrier Coatings, Coatings, 2019, 9(6), p 353.

    Article  CAS  Google Scholar 

  27. S.R. Dhineshkumar, M. Duraiselvam, S. Natarajan, S.S. Panwar, T. Jena and M.A. Khan, Enhancement of Strain Tolerance of Functionally Graded LaTi2Al9O19 Thermal Barrier Coating Through Ultra-short Pulse Based Laser Texturing, Surf. Coat. Technol., 2016, 304, p 263–271.

    Article  CAS  Google Scholar 

  28. C. Batista, A. Portinha, R.M. Ribeiro, V. Teixeira, M.F. Costa and C.R. Oliveira, Surface Laser-Glazing of Plasma-Sprayed Thermal Barrier Coatings, Appl. Surf. Sci., 2005, 247(1–4), p 313–319.

    Article  CAS  Google Scholar 

  29. Y. Bai, Z.H. Han, H.Q. Li, C. Xu, Y.L. Xu, Z. Wang, C.H. Ding and J.F. Yang, High Performance Nanostructured ZrO2 Based Thermal Barrier Coatings Deposited by High Efficiency Supersonic Plasma Spraying, Appl. Surf. Sci., 2011, 257(16), p 7210–7216.

    Article  CAS  Google Scholar 

  30. Z.H. Zhang, H. Zhou, L.Q. Ren, X. Tong, H.Y. Shan and X.Z. Li, Surface Morphology of Laser Tracks Used for Forming the Non-smooth Biomimetic Unit of 3Cr2W8V Steel Under Different Processing Parameters, Appl. Surf. Sci., 2008, 254(8), p 2548.

    Article  CAS  Google Scholar 

  31. C. Mercer, J.R. Williams, D.R. Clarke and A.G. Evans, On a Ferroelastic Mechanism Governing the Toughness of Metastable Tetragonal-Prime (t’) Yttria-Stabilized Zirconia, Proc. Math. Phys. Eng. Sci., 2007, 463(2081), p 1393–1408.

    CAS  Google Scholar 

  32. H. Jamali, R. Mozafarinia, R.S. Razavi and R. Ahmadi-Pidani, Comparison of Thermal Shock Resistances of Plasma-Sprayed Nano Structured and Conventional Yttria Stabilized Zirconia Thermal Barrier Coatings, Ceram. Int., 2012, 38(8), p 6705–6712.

    Article  CAS  Google Scholar 

  33. D.P.H. Hasselman, Elastic Energy at Fracture and Surface Energy as Design Criteria for Thermal Shock, J. Am. Ceram. Soc., 1963, 46(11), p 535–540.

    Article  CAS  Google Scholar 

  34. D.P.H. Hasselman, Unified Theory of Thermal Shock Fracture Initiation and Crack Propagation in Brittle Ceramics, J. Am. Ceram. Soc., 1969, 52(11), p 600–604.

    Article  CAS  Google Scholar 

  35. E.D. Case, The Effect of Microcracking Upon the Poisson’s Ratio for Brittle Materials, J. Mater. Sci., 1984, 19(11), p 3702–3712.

    Article  CAS  Google Scholar 

  36. R.W. Zimmerman, The Effect of Microcracks on the Elastic Moduli of Brittle Materials, J. Mater. Sci. Lett., 1985, 4(12), p 1457–1460.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by Natural Science Foundation of Zhejiang Province (LQ21E010002), Guangdong Basic and Applied Basic Research Foundation (2020A1515011096), Natural Science Foundation of Guangdong Province (2016A030312015), Guangzhou Project of Science & Technology (202007020008), Youth Project of Fujian Provincial Department of Education (JAT170379), Scientific Research Project of Fujian Institute of Technology (GY-Z160006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Yao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Sun, L., Zhang, X. et al. Thermal Cycling Behavior of Selective Laser-Remelted Thermal Barrier Coatings with Different Laser Dot Distances. J Therm Spray Tech 30, 1038–1048 (2021). https://doi.org/10.1007/s11666-021-01173-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-021-01173-3

Keywords

Navigation