Skip to main content
Log in

Existence and behavior of positive solutions for a class of linearly coupled systems with discontinuous nonlinearities in \({\mathbb {R}}^N\)

  • Research Article
  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper we are concerned with existence and behavior of positive solutions to the following class of linearly coupled elliptic systems with discontinuous nonlinearities

$$\begin{aligned} \left\{ \begin{array}{ll} -\Delta u+V_{1}(x)u = H(u-\beta )f_{1}(u)+ a(x)v, &{} \text {in } {\mathbb {R}}^{N},\\ -\Delta v+V_{2}(x)v = H(v-\beta )f_{2}(v)+ a(x)u, &{} \text {in } {\mathbb {R}}^{N},\\ u,v\in D^{1,2}({\mathbb {R}}^{N})\cap W_\mathrm{loc}^{2,2}({\mathbb {R}}^{N}), \end{array} \right. \quad {(S)_{\beta }} \end{aligned}$$

where \(\beta \ge 0\), \(N \ge 3\), \(V_{1},V_{2},\) \(a:{\mathbb {R}}^{N}\rightarrow {\mathbb {R}}\) are positive potentials, which can vanish at infinity, \(f_{1},f_{2}:{\mathbb {R}}\rightarrow {\mathbb {R}}\) are continuous functions and H is the Heaviside function, i.e, \(H(t)=0\) if \(t\le 0,\) \(H(t)=1\) if \(t>0\). We use a suitable nonsmooth truncation, for systems, to apply a version of the penalization method of Del Pino and Felmer (Calc Var Partial Differ Equ 4:121–137, 1996) combined with the Mountain Pass Theorem for locally Lipschitz functional to obtain a positive solution \((u_{\beta },v_{\beta })\) of \((S)_{\beta }\) in multivalued sense. In addition, we show that \((u_{\beta },v_{\beta })\rightarrow (u,v)\) in \(D^{1,2}({\mathbb {R}}^{N})\times D^{1,2}({\mathbb {R}}^{N})\) as \(\beta \rightarrow 0^{+}\), where (uv) is a positive solution of the continuous system \((S)_{0}\) in strong sense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhmediev, N., Ankiewicz, A.: Novel soliton states and bifurcation phenomena in nonlinear fiber couplers. Phys. Rev. Lett. 70, 2395–2398 (1993)

    Article  MathSciNet  Google Scholar 

  2. Alves, C.O.: Existence of standing waves solutions for a Nonlinear Schrödinger equations in \({\mathbb{R}}^{N}\). J. Elliptic Parabol. Equ. 1, 231–241 (2015)

    Article  MathSciNet  Google Scholar 

  3. Alves, C.O., Figueiredo, G.M., Nascimento, R.G.: On existence and concentration of solutions for an elliptic problem with discontinuous nonlinearity via penalization method. Z. Angew Math. Phys. 65, 19–40 (2014)

    Article  MathSciNet  Google Scholar 

  4. Alves, C.O., Nascimento, R.G.: Existence and concentration of solutions for a class of elliptic problems with discontinuous nonlinearity in \({\mathbb{R}}^{N}\). Math. Scand. 112(1), 129–146 (2013)

    Article  MathSciNet  Google Scholar 

  5. Alves, C.O., Souto, M.A.S.: Existence of solution for a class of elliptic equations in \({\mathbb{R}}^{N}\) with vanishing potentials. J. Differ. Equ. 252, 5555–5568 (2012)

    Article  Google Scholar 

  6. Ambrosetti, A., Badiale, M.: The dual variational problem and elliptic problems with discontinuous nonlinearities. J. Math. Anal. Appl. 140, 363–373 (1989)

    Article  MathSciNet  Google Scholar 

  7. Ambrosetti, A., Cerami, G., Ruiz, D.: Solitons of linearly coupled systems of semilinear non-autonomous equations on \({\mathbb{R}}^N\). J. Funct. Anal. 254, 2816–2845 (2008)

    Article  MathSciNet  Google Scholar 

  8. Ambrosetti, A., Turner, R.: Some discontinuous variational problems. Differ. Integral Equ. 1(3), 341–349 (1998)

    MathSciNet  MATH  Google Scholar 

  9. Ambrosetti, A., Wang, Z.Q.: Nonlinear Schrödinger equations with vanishing and decaying potentials. Differ. Integral Equ. 18, 1321–1332 (2005)

    MATH  Google Scholar 

  10. Ambrosetti, A., Felli, V., Malchiodi, A.: Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity. J. Eur. Math. Soc. 7, 117–144 (2005)

    Article  MathSciNet  Google Scholar 

  11. Arcoya, D., Calahorrano, M.: Some discontinuous variational problems with a quasilinear operator. J. Math. Anal. Appl. 187, 1059–1072 (1994)

    Article  MathSciNet  Google Scholar 

  12. Bartsch, T., Wang, Z.Q.: Existence and multiplicity results for some superlinear elliptic problems on \({\mathbb{R}}^{N}\). Comm. Partial Differ. Equ. 20, 1725–1741 (1995)

    Article  Google Scholar 

  13. Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations, I. Existence of a ground state. Arch. Rational Mech. Anal. 82, 313–346 (2020)

    Article  MathSciNet  Google Scholar 

  14. Berestycki, H., Lions, P.L.: Nonlinear scalar field equations, II. Existence of infinitely many solutions. Arch. Rat. Mech. Anal. 82, 347–375 (1983)

    Article  MathSciNet  Google Scholar 

  15. Brezis, H., Kato, T.: Remarks on the Schrödinger operator with singular complex potentials. J. Math. Pures Appl. 58, 137–151 (1979)

    MathSciNet  MATH  Google Scholar 

  16. Brezis, H., Lieb, E.H.: Minimum action solutions of some vector field equations. Comm. Math. Phys. 96, 97–113 (1984)

    Article  MathSciNet  Google Scholar 

  17. Chang, K.C.: The obstacle problem and partial differential equations with discontinuous nonlinearities. Comm. Pure Appl. Math. 33, 139–158 (1978)

    MathSciNet  Google Scholar 

  18. Chang, K.C.: Variational methods for nondifferentiable functionals and their applications to partial differential equations. J. Math. Anal. Appl. 80, 102–129 (1981)

    Article  MathSciNet  Google Scholar 

  19. Chen, Z., Zou, W.: Ground states for a system of Schrödinger equations with critical exponent. J. Funct. Anal. 262, 3091–3107 (2012)

    Article  MathSciNet  Google Scholar 

  20. Chen, Z., Zou, W.: On coupled systems of Schrödinger equations. Adv. Differ. Equ. 16, 775–800 (2011)

    MATH  Google Scholar 

  21. Clarke, F.H.: Optimization and nonsmooth analysis. Wiley, New York (1983)

    MATH  Google Scholar 

  22. Clarke, F.H.: Generalized gradients and applications. Trans. Am. Math. Soc. 265, 247–262 (1975)

    Article  MathSciNet  Google Scholar 

  23. del Pino, M., Felmer, P.L.: Local Mountain Pass for semilinear elliptic problems in unbounded domains. Calc. Var. Partial Differ. Equ. 4, 121–137 (1996)

    Article  Google Scholar 

  24. Dinu, T.-L.: Entire solutions of Schrödinger elliptic systems with discontinuous nonlinearity and sign-changing potential. Math. Model. Anal. 11(3), 229–242 (2006)

    Article  MathSciNet  Google Scholar 

  25. Floer, A., Weinstein, A.: Nonspreading wave packets for the cubic Schrödinger equations with bounded potential. J. Funct. Anal. 69, 397–408 (1986)

    Article  MathSciNet  Google Scholar 

  26. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Springer, Berlin (1983)

  27. Grossinho, M.R., Tersian, S.A.: An introduction to minimax theorems and their applications to differential equations. Nonconvex Optim. Appl. 52, (2001)

  28. Kristály, A.: Existence of nonzero weak solutions for a class of elliptic variational inclusions systems in \({\mathbb{R}}^{N}\). Nonlinear Anal. 65, 1578–1594 (2006)

    Article  MathSciNet  Google Scholar 

  29. dos Santos, G.C.G., Figueiredo, G.M.: Existence of solutions for a NSE with discontinuous nonlinearity. J. Fixed Point Theory Appl. 19, 917–937 (2017)

    Article  MathSciNet  Google Scholar 

  30. dos Santos, G.G., Figueiredo, G.M., Nascimento, R.G.: Existence and behavior of positive solution for a problem with discontinuous nonlinearity in \({\mathbb{R}}^N\) via a nonsmooth penalization. Z. Angew. Math. Phys. 71, 71 (2020). https://doi.org/10.1007/s00033-020-01296-7

    Article  MATH  Google Scholar 

  31. Oh, Y.G.: Existence of semi\(-\)classical bound states of nonlinear Schrödinger equations with potentials on the class \((V)\). Comm. Partial Differ. Equ. 13, 1499–1519 (1988)

    Article  Google Scholar 

  32. Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew Math. Phys. 43, 270–291 (1992)

    Article  MathSciNet  Google Scholar 

  33. Strauss, W.A.: Existence of solitary waves in higher dimensions. Comm. Math. Phys. 55, 149–162 (1977)

  34. Struwe, M.: Applications to nonlinear partial differential equations and hamiltonian systems, 4th edn. Springer (2007)

  35. Teng, K.: Existence and multiplicity results for some elliptic systems with discontinuous nonlinearities. Nonlinear Anal. 75, 2975–2987 (2012)

    Article  MathSciNet  Google Scholar 

  36. Zhang, G.Q., Liu, S.Y.: Multiplicity result for a class of elliptic problems with non-differentiable terms in \({\mathbb{R}}^{N}\). Nonlinear Anal. 71(5–6), 1611–1619 (2009)

    Article  MathSciNet  Google Scholar 

  37. Zhang, G.Q., Wang, Y.K.: On a class of Schrödinger systems with discontinuous nonlinearities. J. Math. Anal. Appl. 331, 1415–1424 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Research supported by CNPq. The authors would like to express their sincere gratitude to the referees for carefully reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Carlos de Albuquerque.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Albuquerque, J.C., Santos, G.G.d. & Figueiredo, G.M. Existence and behavior of positive solutions for a class of linearly coupled systems with discontinuous nonlinearities in \({\mathbb {R}}^N\). J. Fixed Point Theory Appl. 23, 19 (2021). https://doi.org/10.1007/s11784-021-00858-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11784-021-00858-0

Keywords

Mathematics Subject Classification

Navigation