Skip to main content
Log in

Thermal Conductivity Enhancement of Silica Nanofluids for Ultrafast Cooling Applications: Statistical Modeling and Economic Analysis

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Effectively dispersed spherical metallic or non-metallic nanoparticles at low mass concentrations in water, oil, or ethylene glycol may enhance the thermal conductivity of the mixture over the basefluid values. Focusing on the dilute suspensions of effectively dispersed SiO2 nanoparticles in water, the thermal conductivity of nanofluids was measured and statistical and economic analysis was performed. Stable nanofluids were prepared by dispersing dry SiO2 particles directly in water using sonication. The thermal conductivity of nanofluid with mass concentrations of 0.01 % to 1 % was estimated using a unique ultrasonic velocity measurement technique at various temperatures over 25 °C to 65 °C for every 10 °C rise. Impacts of concentration, temperature, and component materials on thermal conductivity enhancement were obtained. Experimental data are analyzed through statistical method and a simple linear regression model (with R2 > 0.99) of thermal conductivity is presented. Further, pricewise performance of nanofluids is performed to obtain the economic feasibility of SiO2–water nanofluids in heat transfer applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

f:

Sound frequency, Hz

k:

Thermal conductivity, W⋅m1⋅K1

Kb :

Boltzmann constant, 1.3087 JK1\(\times {10}^{-23}\) JK1

M:

Molar mass, kg⋅mol1

NA :

Avogadro number, 6.023 \(\times\) 1023 (mol1)

n:

Number of experimental runs/data points

U:

Uncertainty

V:

Molar volume, m3⋅mol1

v:

Sound velocity, m⋅s1

x:

Mole fraction

X:

Measuring parameter

α:

Pricewise performance ratio

Δ:

Difference

λ:

Wavelength

ρ:

Density (kg⋅m3)

σ:

Standard deviation

ϕ:

Mass concentration (%)

ω:

Mass (kg)

bf:

Basefluid

np:

Nanoparticles

nf:

Nanofluid

enhancement:

Enhancement

experimental:

Experimental values

predicted:

Predicted values

References

  1. S.U.S. Choi, J.A. Eastman, Argonne National Lab., IL (United States) (1995)

  2. M. Ebrahimi, M. Akhoundi, A feasibility study and economic analysis for application of nanofluids in waste heat recovery. Energy Equip. Syst. 4, 205–214 (2016)

    Google Scholar 

  3. R. Saidur, K.Y. Leong, H.A. Mohammad, A review on applications and challenges of nanofluids. Renew. Sustain. Energy Rev. 15, 1646–1668 (2011)

    Article  Google Scholar 

  4. K.V. Wong, O. De Leon, Applications of nanofluids: current and future. In: Nanotechnology and Energy. Jenny Stanford Publishing, pp 105–132 (2017)

  5. W. Yu, H. Xie, A review on nanofluids: preparation, stability mechanisms, and applications. J. Nanomater. 2012, 1–17 (2012)

    Google Scholar 

  6. G. Paul, M. Chopkar, I. Manna, P.K. Das, Techniques for measuring the thermal conductivity of nanofluids: a review. Renew. Sustain. Energy Rev. 14, 1913–1924 (2010). https://doi.org/10.1016/j.rser.2010.03.017

    Article  Google Scholar 

  7. M.H. Esfe, S. Esfandeh, S. Saedodin, H. Rostamian, Experimental evaluation, sensitivity analyzation and ANN modeling of thermal conductivity of ZnO-MWCNT/EG-water hybrid nanofluid for engineering applications. Appl. Therm. Eng. 125, 673–685 (2017)

    Article  Google Scholar 

  8. R. Agarwal, K. Verma, N.K. Agrawal, R.K. Duchaniya, R. Singh, Synthesis, characterization, thermal conductivity and sensitivity of CuO nanofluids. Appl. Therm. Eng. 102, 1024–1036 (2016). https://doi.org/10.1016/j.applthermaleng.2016.04.051

    Article  Google Scholar 

  9. J.E. Graves, E. Latvytė, A. Greenwood, N.G. Emekwuru, Ultrasonic preparation, stability and thermal conductivity of a capped copper-methanol nanofluid. Ultrason. Sonochem. 55, 25–31 (2019)

    Article  Google Scholar 

  10. V. Mikkola, S. Puupponen, H. Granbohm, K. Saari, T. Ala-Nissila, A. Seppälä, Influence of particle properties on convective heat transfer of nanofluids. Int. J. Therm. Sci. 124, 187–195 (2018)

    Article  Google Scholar 

  11. M.H. Ahmadi, A. Mirlohi, M.A. Nazari, R. Ghasempour, A review of thermal conductivity of various nanofluids. J. Mol. Liq. 265, 181–188 (2018)

    Article  Google Scholar 

  12. R.L. Hamilton, O.K. Crosser, Thermal conductivity of heterogeneous two-component systems. Ind. Eng. Chem. Fundam. 1, 187–191 (1962)

    Article  Google Scholar 

  13. B.C. Pak, Y.I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transfer 11, 151–170 (1998). https://doi.org/10.1080/08916159808946559

    Article  ADS  Google Scholar 

  14. P. Bhattacharya, S. Saha, A. Yadav, P. Phelan, R. Prasher, Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids. J. Appl. Phys. 95, 6492–6494 (2004)

    Article  ADS  Google Scholar 

  15. E.V. Timofeeva, A.N. Gavrilov, J.M. McCloskey, Y.V. Tolmachev, S. Sprunt, L.M. Lopatina, J.V. Selinger, Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory. Phys. Rev. E 76, 061203 (2007)

    Article  ADS  Google Scholar 

  16. S. Zhang, Z. Ge, X. Fan, H. Huang, X. Long, Prediction method of thermal conductivity of nanofluids based on radial basis function. J. Therm. Anal. Calorim. 141, 859–880 (2020). https://doi.org/10.1007/s10973-019-09067-x

    Article  Google Scholar 

  17. S. Zhang, Y. Yu, Z. Xu, H. Huang, Z. Liu, C. Liu, X. Long, Z. Ge, Measurement and modeling of the thermal conductivity of nanorefrigerants with low volume concentrations. Thermochim. Acta 688, 178603 (2020). https://doi.org/10.1016/j.tca.2020.178603

    Article  Google Scholar 

  18. M. Nabeel Rashin, J. Hemalatha, A novel ultrasonic approach to determine thermal conductivity in CuO–ethylene glycol nanofluids. J. Mol. Liq. 197, 257–262 (2014). https://doi.org/10.1016/j.molliq.2014.05.024

    Article  Google Scholar 

  19. P.W. Bridgman, The Thermodynamics of Electrical Phenomena in Metals, and A Condensed Collection of Thermodynamic Formulas, vol 723. Dover Publications (1961)

  20. J. Shah, M. Ranjan, V. Davariya, S.K. Gupta, Y. Sonvane, Temperature-dependent thermal conductivity and viscosity of synthesized α-alumina nanofluids. Appl. Nanosci. 7, 803–813 (2017). https://doi.org/10.1007/s13204-017-0594-7

    Article  ADS  Google Scholar 

  21. M. Leena, S. Srinivasan, Thermal conductivity and acoustical investigation of SnO2 nanofluids using ultrasonic velocity measurements. J. Mater. Sci.: Mater. Electron. 30, 8249–8258 (2019)

    Google Scholar 

  22. M.K. Abdolbaqi, N.A.C. Sidik, M.F.A. Rahim, R. Mamat, W.H. Azmi, M.N.A.W.M. Yazid, G. Najafi, Experimental investigation and development of new correlation for thermal conductivity and viscosity of BioGlycol/water based SiO2 nanofluids. Int. Commun. Heat Mass Transfer 77, 54–63 (2016). https://doi.org/10.1016/j.icheatmasstransfer.2016.07.001

    Article  Google Scholar 

  23. S. Yan, F. Wang, Z. Shi, R. Tian, Heat transfer property of SiO2/water nanofluid flow inside solar collector vacuum tubes. Appl. Therm. Eng. 118, 385–391 (2017). https://doi.org/10.1016/j.applthermaleng.2017.02.108

    Article  Google Scholar 

  24. D. Li, J. Li, W. Zhao, Stability and thermal conductivity of SiO2-water nanofluid. J. Univ. JINAN (Sci & Tech) 24, 247–250 (2010)

    Google Scholar 

  25. B.C. Sahoo, D.K. Das, R.S. Vajjha, J.R. Satti, Measurement of the thermal conductivity of silicon dioxide nanofluid and development of correlations. J. Nanotechnol. Eng. Med. (2013). https://doi.org/10.1115/1.4024003

    Article  Google Scholar 

  26. E. Natarajan, R. Sathish, Role of nanofluids in solar water heater. Intl. J. Adv. Manuf. Technol. 1–5 (2009)

  27. N. Ali, J.A. Teixeira, A. Addali, A review on nanofluids: fabrication, stability, and thermophysical properties. J. Nanomater. 2018, 1–33 (2018)

    Google Scholar 

  28. N. WebBook, Thermophysical properties of fluid systems (2016). http://webbook.nist.gov/chemistry/fluid/. Accessed 18 January 2015

  29. W. Azmi, K. Sharma, P. Sarma, R. Mamat, G. Najafi, Heat transfer and friction factor of water based TiO2 and SiO2 nanofluids under turbulent flow in a tube. Int. Commun. Heat Mass Transfer 59, 30–38 (2014)

    Article  Google Scholar 

  30. W. Guo, G. Li, Y. Zheng, C. Dong, Measurement of the thermal conductivity of SiO2 nanofluids with an optimized transient hot wire method. Thermochim. Acta 661, 84–97 (2018)

    Article  Google Scholar 

  31. B.J. Zhu, W.L. Zhao, D.D. Li, J.K. Li, Effect of volume fraction and temperature on thermal conductivity of SiO2 nanofluids. In: 2011. Trans Tech Publ, pp 1178–1181

  32. G.M. Moldoveanu, A.A. Minea, M. Iacob, C. Ibanescu, M. Danu, Experimental study on viscosity of stabilized Al2O3, TiO2 nanofluids and their hybrid. Thermochim. Acta 659, 203–212 (2018). https://doi.org/10.1016/j.tca.2017.12.008

    Article  Google Scholar 

  33. H.U. Kang, S.H. Kim, J.M. Oh, Estimation of thermal conductivity of nanofluid using experimental effective particle volume. Exp. Heat Transfer 19, 181–191 (2006). https://doi.org/10.1080/08916150600619281

    Article  ADS  Google Scholar 

  34. M. Jahanshahi, S.F. Hosseinizadeh, M. Alipanah, A. Dehghani, G.R. Vakilinejad, Numerical simulation of free convection based on experimental measured conductivity in a square cavity using water/SiO2 nanofluid. Int. Commun. Heat Mass Transfer 37, 687–694 (2010). https://doi.org/10.1016/j.icheatmasstransfer.2010.03.010

    Article  Google Scholar 

  35. I.W. Almanassra, A.D. Manasrah, U.A. Al-Mubaiyedh, T. Al-Ansari, Z.O. Malaibari, M.A. Atieh, An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: a comparison study. J. Mol. Liquids 111025 (2019)

Download references

Acknowledgment

The authors cordially acknowledge the funding provided by DAE-BRNS to run this research work. The authors also thankful to KIIT Deemed to be University to provide the opportunity to execute this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Purna Chandra Mishra.

Ethics declarations

Conflict of interests

The authors do not have any conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, N., Mukherjee, S., Mishra, P.C. et al. Thermal Conductivity Enhancement of Silica Nanofluids for Ultrafast Cooling Applications: Statistical Modeling and Economic Analysis. Int J Thermophys 42, 62 (2021). https://doi.org/10.1007/s10765-021-02816-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02816-x

Keywords

Navigation