Skip to main content
Log in

Hydrophobic nanocellulose aerogels with high loading of metal-organic framework particles as floating and reusable oil absorbents

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, we employed a facile approach to prepare flexible and porous metal-organic frameworks (MOFs) containing cellulose nanofiber (CNF) aerogels (MNCAs) through freeze-drying MOF-containing cellulose nanofiber suspensions. After coating with methyltrimethoxysilane (MTMS) by chemical vapor deposition, recycled and hydrophobic MTMS-coated MNCAs (MMNCAs) were obtained. Due to the low density (0.009 g/cm3), high porosity (97%) and good mechanical properties of the aerogel, the adsorption capacity of MMNCAs reached up to 210 g/g, which was nearly 3–5 times that of pure CNF aerogels. These prepared aerogels showed excellent oil/water selectivity and high capacity to adsorb oil and organic solvents. This kind of cellulose-based aerogel may be applicable in the field of environmental protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vibhute A M, Muvvala V, Sureshan K M. A sugar-based gelator for marine oil-spill recovery. Angewandte Chemie, 2016, 128(27): 7913–7916

    Article  Google Scholar 

  2. Chapman H, Purnell K, Law R J, Kirby M F. The use of chemical dispersants to combat oil spills at sea: a review of practice and research needs in Europe. Marine Pollution Bulletin, 2007, 54(7): 827–838

    Article  CAS  PubMed  Google Scholar 

  3. Kuyukina M S, Ivshina I B, Ritchkova M I, Philp J C, Cunningham C J, Christofi N. Bioremediation of crude oil-contaminated soil using slurry-phase biological treatment and land farming techniques. Soil and Sediment Contamination: An International Journal, 2003, 12(1): 85–99

    Article  CAS  Google Scholar 

  4. Angelova D, Uzunov I, Uzunova S, Gigova A, Minchev L. Kinetics of oil and oil products adsorption by carbonized rice husks. Chemical Engineering Journal, 2011, 172(1): 306–311

    Article  CAS  Google Scholar 

  5. Sabir S. Approach of cost-effective adsorbents for oil removal from oily water. Critical Reviews in Environmental Science and Technology, 2015, 45(17): 1916–1945

    Article  CAS  Google Scholar 

  6. Maleki H. Recent advances in aerogels for environmental remediation applications: a review. Chemical Engineering Journal, 2016, 300: 98–118

    Article  CAS  Google Scholar 

  7. Wang C H, Kim J, Tang J, Na J, Kang Y M, Kim M, Lim H, Bando Y, Li J, Yamauchi Y. Large-scale synthesis of MOF-derived superporous carbon aerogels with extraordinary adsorption capacity for organic solvents. Angewandte Chemie, 2020, 59(5): 2066–2070

    Article  CAS  PubMed  Google Scholar 

  8. Muhd Julkapli N, Bagheri S. Nanocellulose as a green and sustainable emerging material in energy applications: a review. Polymers for Advanced Technologies, 2017, 28(12): 1583–1594

    Article  CAS  Google Scholar 

  9. Timo H, Fan Z, Tobias R, Andreas W, Rolf M. Nanocellulose aerogels for supporting iron catalysts and in situ formation of polyethylene nanocomposites. Advanced Functional Materials, 2017, 27(11): 1605586

    Article  CAS  Google Scholar 

  10. Li Y L, Liu Y S, Liu Y, Lai W C, Huang F, Ou A P, Qin R, Liu X Y, Wang X. Ester crosslinking enhanced hydrophilic cellulose nanofibrils aerogel. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 11979–11988

    Article  CAS  Google Scholar 

  11. Wu Z Y, Liang H W, Chen L F, Hu B C, Yu S H. Bacterial cellulose: a robust platform for design of three dimensional carbon-based functional nanomaterials. Accounts of Chemical Research, 2016, 49 (1): 96–105

    Article  CAS  PubMed  Google Scholar 

  12. Phanthong P, Reubroycharoen P, Kongparakul S, Samart C, Wang Z D, Hao X G, Abudula A, Guan G Q. Fabrication and evaluation of nanocellulose sponge for oil/water separation. Carbohydrate Polymers, 2018, 190: 184–189

    Article  CAS  PubMed  Google Scholar 

  13. Huang S, Wang D Y. A simple nanocellulose coating for self-cleaning upon water action: molecular design of stable surface hydrophilicity. Angewandte Chemie International Edition, 2017, 56 (31): 9053–9057

    Article  CAS  PubMed  Google Scholar 

  14. Jin H, Kettunen M, Laiho A, Pynnonen H, Paltakari J, Marmur A, Ikkala O, Ras H A. Superhydrophobic and superoleophobic nanocellulose aerogel membranes as bioinspired cargo carriers on water and oil. Langmuir, 2011, 27(5): 1930–1934

    Article  CAS  PubMed  Google Scholar 

  15. Korhonen J T, Kettunen M, Ras R H A, Ikkala O. Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Applied Materials & Interfaces, 2011, 3(6): 1813–1816

    Article  CAS  Google Scholar 

  16. Liu H Z, Geng B Y, Chen Y F, Wang H Y. Review on the aerogel-type oil sorbents derived from nanocellulose. ACS Sustainable Chemistry & Engineering, 2017, 5(1): 49–66

    Article  CAS  Google Scholar 

  17. Todd H, Cranston E D. Review of hydrogels and aerogels containing nanocellulose. Chemistry of Materials, 2017, 29(11): 4609–4631

    Article  CAS  Google Scholar 

  18. Zanini M, Lavoratti A, Lazzari L K, Galiotto D, Pagnocelli M, Baldasso C, Zattera A J. Producing aerogels from silanized cellulose nanofiber suspension. Cellulose, 2017, 24(2): 769–779

    Article  CAS  Google Scholar 

  19. Zhang W N, Lu G, Cui C L, Liu Y Y, Li S Z, Yan W J, Xing C, Chi Y R, Yang Y H, Huo F G. A family of metal-organic frameworks exhibiting size-selective catalysis with encapsulated noble-metal nanoparticles. Advanced Materials, 2014, 26(24): 4056–4060

    Article  CAS  PubMed  Google Scholar 

  20. Kaneti Y V, Dutta S, Hossain M S A, Shiddiky M J A, Tung K L, Shieh F K, Tsung C K, Wu K C W, Yamauchi Y. Strategies for improving the functionality of zeolitic imidazolate frameworks: tailoring nanoarchitectures for functional applications. Advanced Materials, 2017, 29(38): 1700213

    Article  CAS  Google Scholar 

  21. Jiang J, Yaghi O M. Brønsted acidity in metal-organic frameworks. Chemical Reviews, 2015, 115(14): 6966–6997

    Article  CAS  PubMed  Google Scholar 

  22. Howarth A J, Liu Y Y, Li P, Li Z Y, Wang T C, Hupp J T, Farha O K. Chemical, thermal and mechanical stabilities of metal-organic frameworks. Nature Reviews. Materials, 2016, 1(3): 15018

    Article  CAS  Google Scholar 

  23. Sun L, Campbell M G, Dincă M. Electrically conductive porous metal-organic frameworks. Angewandte Chemie International Edition, 2016, 55(11): 3566–3579

    Article  CAS  PubMed  Google Scholar 

  24. Wang C H, Kaneti Y V, Bando Y, Lin J J, Liu C, Li J S, Yamauchi Y. Metal-organic framework-derived one-dimensional porous or hollow carbon-based nanofibers for energy storage and conversion. Materials Horizons, 2018, 5(3): 394–407

    Article  CAS  Google Scholar 

  25. Kaneti Y V, Zhang J, He Y B, Wang Z J, Tanaka S, Hossain M S A, Pan Z Z, Xiang B, Yang Q H, Yamauchi Y. Fabrication of an MOF-derived heteroatom-doped Co/CoO/carbon hybrid with superior sodium storage performance for sodium-ion batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(29): 15356–15366

    CAS  Google Scholar 

  26. Li H L, Eddaoudi M M, O’Keeffe M, Yaghi O M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 1999, 402(6759): 276–279

    Article  CAS  Google Scholar 

  27. Wang C H, Kim J, Tang J, Kim M, Lim H, Malgras V, You J, Xu Q, Li J S, Yamauchi Y. New strategies for novel MOF-derived carbon materials based on nanoarchitectures. Chem, 2020, 6(1): 19–40

    Article  CAS  Google Scholar 

  28. Hmadeh M, Lu Z, Liu Z, Gándara F, Furukawa H, Wan S, Augustyn V, Chang R, Liao L, Zhou F, et al. New porous crystals of extended metal-catecholates. Chemistry of Materials, 2012, 24(18): 3511–3513

    Article  CAS  Google Scholar 

  29. Ma X T, Lou Y, Chen X B, Shi Z, Xu Y. Multifunctional flexible composite aerogels constructed through in-situ growth of metal-organic framework nanoparticles on bacterial cellulose. Chemical Engineering Journal, 2019, 356: 227–235

    Article  CAS  Google Scholar 

  30. Matsumoto M, Kitaoka T. Ultraselective gas separation by nanoporous metal-organic frameworks embedded in gas-barrier nanocellulose films. Advanced Materials, 2016, 28(9): 1765–1769

    Article  CAS  PubMed  Google Scholar 

  31. Li L, Chen Q, Niu Z G, Zhou X H, Yang T, Huang W. Lanthanide metal-organic frameworks assembled from a fluorene-based ligand: selective sensing of Pb2+ and Fe3+ ions. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2016, 4 (9): 1900–1905

    Article  CAS  Google Scholar 

  32. Li B Y, Dong X G, Wang H, Ma D X, Tan K, Jensen S, Deibert B J, Butler J, Cure J, Shi Z, et al. Capture of organic iodides from nuclear waste by metal-organic framework-based molecular traps. Nature Communications, 2017, 8(1): 485

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Cavka J H, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud K P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. Journal of the American Chemical Society, 2008, 130(42): 13850–13851

    Article  PubMed  CAS  Google Scholar 

  34. Gilang G, Yusuf V K, Joel H, Sauvik C, Jongbeom N, Brian Y, Nugraha N. General synthesis of hierarchical sheet/plate-like M-BDC (M = Cu, Mn, Ni, and Zr) metal-organic frameworks for electrochemical non-enzymatic glucose sensing. Chemical Science, 2020, 14: 3644–3655

    Google Scholar 

  35. Lee J Y, Farha O K, Roberts J, Scheidt K A, Nguyen S T, Hupp J T. Metal-organic framework materials as catalysts. Chemical Society Reviews, 2009, 38(5): 1450

    Article  CAS  PubMed  Google Scholar 

  36. Kandiah M, Nilsen M H, Usseglio S, Jakobsen S, Olsbye U, Tilset M, Larabi C, Quadrelli E A, Bonino F, Lillerud K P. Synthesis and stability of tagged UiO-66 Zr-MOFs. Chemistry of Materials, 2010, 22(24): 6632–6640

    Article  CAS  Google Scholar 

  37. Abe K, Iwamoto S, Yano H. Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules, 2007, 8 (10): 3276–3278

    Article  CAS  PubMed  Google Scholar 

  38. Zhou S K, You T T, Zhang X M, Xu F. Superhydrophobic cellulose nanofiber-assembled aerogels for highly efficient water-in-oil emulsions separation. ACS Applied Nano Materials, 2018, 1(5): 2095–2103

    Article  CAS  Google Scholar 

  39. Aghajanzadeh M, Zamani M, Molavi H, Khieri Manjili H, Danafar H, Shojaei A. Preparation of metal-organic frameworks UiO-66 for sdsorptive removal of methotrexate from aqueous solution. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28 (1): 177–186

    Article  CAS  Google Scholar 

  40. Xu Z Y, Zhou H, Jiang X D, Li J Y, Huang F. Facile synthesis of reduced graphene oxide/trimethyl chlorosilane-coated cellulose nanofibres aerogel for oil absorption. IET Nanobiotechnology, 2017, 11(8): 929–934

    Article  PubMed  PubMed Central  Google Scholar 

  41. Xu Z Y, Jiang X D, Zhou H, Li J Y. Preparation of magnetic hydrophobic polyvinyl alcohol (PVA)-cellulose nanofiber (CNF) aerogels as effective oil absorbents. Cellulose, 2018, 25(2): 1217–1227

    Article  CAS  Google Scholar 

  42. Xu Z Y, Jiang X D, Tan S C, Wu W B, Shi J T, Zhou H, Chen P. Preparation and characterisation of CNF/MWCNT carbon aerogel as efficient adsorbents. IET Nanobiotechnology, 2018, 12(4): 500–504

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhao W, Jia W P, Xu M Z, Wang J X, Li Y M, Zhang Z Y, Wang Y N, Zheng L, Li Q, Yun J N, Yan J, Wang X, Liu Z. Facile synthesis of oil adsorbent carbon microtubes by pyrolysis of plant tissues. Journal of Materials Science, 2019, 54(13): 9352–9361

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education (Grant No. SWZ-ZD201906) and the National Natural Science Foundation of China (Grant No. 31770607). The authors thank the Advanced Analysis & Testing Center of Nanjing Forestry University for its help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoyang Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zhai, S., Wu, W. et al. Hydrophobic nanocellulose aerogels with high loading of metal-organic framework particles as floating and reusable oil absorbents. Front. Chem. Sci. Eng. 15, 1158–1168 (2021). https://doi.org/10.1007/s11705-020-2021-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-020-2021-z

Keywords

Navigation