Skip to main content
Log in

Changes in cell wall components and hygroscopic properties of Pinus radiata caused by heat treatment

  • Original Article
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

After thermal modification at 210 °C using the Thermowood method, changes in Pinus radiata D. Don wood cell wall components and hygroscopicity were studied for subsequent comparison with recently felled wood of the same species in samples from the same region of provenance (Basque Country, Spain). To this end, samples were characterised by sorption isotherms at 15, 35 and 50 °C fitted to the Guggenheim–Anderson–de Boer (GAB) model, the chemical composition was obtained by high performance liquid chromatography (HPLC) and infrared spectroscopy (FTIR), and crystallinity and structural organisation of cellulose (crystal orientation) were determined using powder and 2D X-ray diffraction (XRD). Heat treatment caused the following changes in the wood: a decrease in the equilibrium moisture content (EMC); a smaller hysteresis area and therefore more hygroscopically stable wood; a decrease in the hemicellulose content; an increase in the relative percentage of cellulose, lignin and extractives; and a higher degree of crystallinity and crystal orientation of the cellulose. The reorganisation of cellulose could be explained by epitaxial growth of cellulose starting from the highly oriented crystalline regions during the recrystallisation process. All these chemical and structural changes induced by heating could explain the reduction in hygroscopic properties of wood, as well as its stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acheson DT (1965) Vapor pressure of saturated aqueous salt solutions, humidity and moisture, vol 3. Rein hold Publishing Corporation, New York

    Google Scholar 

  • Akgul M, Gumuskaya E, Korkut S (2007) Crystalline structure of heat-treated Scots pine (Pinus sylvestris L.) and Uludag fir (Abies nordmanniana (Stev.) subsp. bornmuelleriana (Mattf.)) wood. Wood Sci Technol 41:281–289. https://doi.org/10.1007/s00226-006-0110-9

    Article  CAS  Google Scholar 

  • Avramidis S (1997) The basics of sorption. In: Paper presented at the proceedings of international conference of COST Action E8: mechanical performance of wood and wood products. Copenhagen, pp 1–16

  • Baxter GP, Cooper WC Jr (1924) The aqueous pressure of hydrated crystal s. II. Oxalic acid, sodium sulfate, sodium acetate, sodium carbonate, di sodium phosphate, barium chloride. J Am Chern Soc 46:923

    CAS  Google Scholar 

  • Bhuiyan T, Hirai N (2005) Study of crystalline behavior of heat-treated wood cellulose during treatments in water. J Wood Sci 51:42–47

    CAS  Google Scholar 

  • Bhuiyan MTR, Hirai N, Sobue N (2000) Changes of crystallinity in wood cellulose by heat treatment under dried and moist conditions. J Wood Sci 46(6):431–436. https://doi.org/10.1007/BF00765800

    Article  CAS  Google Scholar 

  • Biziks V, Andersons B, Sansonetti E, Andersone I, Militz H, Grinins J (2014) One-stage thermo-hydro treatment (THT) of hardwoods: an analysis of form stability after five soaking-drying cycles. Holzforschung 69(5):563–571

    Google Scholar 

  • Bonarski JT, Olek W (2011) Application of the crystalline volume fraction for characterizing the ultrastructural organization of wood. Cellulose 18:223–235

    Google Scholar 

  • Boonstra MJ, Tjeerdsma B (2006) Chemical analysis of heat treated softwoods. Holz Roh Werkst 64(3):204–211

    CAS  Google Scholar 

  • Boonstra MJ, van Acker J, Kegel E, Stevens M (2007) Optimisation of a two-stage heat treatment process: durability aspects. Wood Sci Technol 41:31–57. https://doi.org/10.1007/s00226-006-0087-4

    Article  CAS  Google Scholar 

  • Čermák P, Rautkari L, Horacek P, Saake B, Rademacher P, Sablık P (2015) Analysis of dimensional stability of thermally modified wood affected by re-wetting cycles. BioResources 10(2):3242–3253

    Google Scholar 

  • Christensen GN, Kelsey KE (1959) The rate of sorption of water vapor by wood. Holz Roh Werkst 17:178–188

    CAS  Google Scholar 

  • Clarke ECW, Glew DN (1985) Evaluation of the thermodynamic functions for aqueous sodium chloride from equilibrium and calorimetric measurements below 154 °C. J Phys Chem Ref Data 14:489–610

    CAS  Google Scholar 

  • Easty DB, Malcolm EW (1982) Estimation of pulping yield in continuous digesters from carbohydrate and lignin determinations. Tappi J 65:78–80

    CAS  Google Scholar 

  • Esteban LG, Gril J, Palacios P, Guindeo A (2005) Reduction of wood hygroscopicity and associated dimensional response by repeated humidity cycles. Ann For Sci 62:275–284

    Google Scholar 

  • Esteban LG, de Palacios P, Fernandez FG, Guindeo A, Cano NN (2008a) Sorption and thermodynamic properties of old and new Pinus sylvestris wood. Wood Fiber Sci 40:111–121

    CAS  Google Scholar 

  • Esteban LG, de Palacios P, Fernandez FG, Guindeo A, Conde M, Baonza V (2008b) Sorption and thermodynamic properties of juvenile Pinus sylvestris L. wood after 103 years of submersion. Holzforschung 62:745–751. https://doi.org/10.1515/HF.2008.106

    Article  CAS  Google Scholar 

  • Esteban LG, de Palacios P, García Fernandez F, Martin JA, Genova M, Fernandez-Golfin JI (2009) Sorption and thermodynamic properties of buried juvenile Pinus sylvestris L. wood aged 1,170 ± 40 BP. Wood Sci Technol 43:140–151. https://doi.org/10.1007/s00226-009-0261-6

    Article  CAS  Google Scholar 

  • Esteban LG, de Palacios P, García Fernandez F, García-Amorena I (2010) Effects of burial of Quercus spp. wood aged 5910±250 BP on sorption and thermodynamic properties. Int Biodeter Biodegrad 64:371–377. https://doi.org/10.1016/j.ibiod.2010.01.010

    Article  CAS  Google Scholar 

  • Esteves BM, Pereira HM (2009) Wood modification by heat treatment: a review. BioResources 4(1):370–404

    CAS  Google Scholar 

  • Evans R, Newman RH, Roick UC (1995) Changes in cellulose crystallinity during kraft pulping. Comparison of infrared, x-ray diffraction and solid state NMR results. Holzforschung 49:498–504

    CAS  Google Scholar 

  • Fengel D, Wegener G (1989) Wood: chemistry ultrastructure. Reactions. Walter De Gruyter, Berlin

    Google Scholar 

  • Fredriksson M, Thybring EE (2018) Scanning or desorption isotherms? Characterising sorption hysteresis of wood. Cellulose 25(8):4477–4485. https://doi.org/10.1007/s10570-018-1898-9

    Article  CAS  Google Scholar 

  • French AD, Kim HJ (2018) Cotton fiber structure. In: Fang D (ed) Cotton fiber: physics and biology. Springer, New York, pp 13–39

    Google Scholar 

  • French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size and the Segal Crystallinity Index. Cellulose 20:583–588. https://doi.org/10.1007/s10570-012-9833-y

    Article  CAS  Google Scholar 

  • García-Iruela A, Esteban LG, de Palacios P, García Fernández F, Martín-Sampedro R, Eugenio ME (2019) Changes in cell wall components of Pinus sylvestris L. wood after 300 years in contact with salt (NaCl). BioResources 14(2):3069–3091

    Google Scholar 

  • Greenspan L (1977) Humidity fixed-points of binary saturated aqueous-solutions. J Res Nat Bureau Stand Sect A Phys Chem 81(1):89–96

    Google Scholar 

  • Hakkou M, Pétrissans M, Gérardin P, Zoulalian A (2006) Investigations of the reasons for fungal durability of heat-treated beech wood. Polym Degrad Stab 91:393–397

    CAS  Google Scholar 

  • He J, Cui S, Wang SY (2008) Preparation and crystalline analysis of high-grade bamboo dissolving pulp for cellulose acetate. J Appl Polym Sci 107:1029–1038

    CAS  Google Scholar 

  • Hill CAS (2006) Wood modification—chemical thermal and other processes. Wiley, Chichester

    Google Scholar 

  • Hill CAS, Jones D (1996) The dimensional stabilisation of Corsican pine sapwood by reaction with carboxylic acid anhydrides. The effect of chain length. Holzforschung 50:457–462. https://doi.org/10.1515/hfsg.1996.50.5.457

    Article  CAS  Google Scholar 

  • Hill CAS, Jones D (1999) Dimensional changes in Corsican pine sapwood due to chemical modification with linear chain anhydrides. Holzforschung 53:267–271. https://doi.org/10.1515/HF.1999.045

    Article  CAS  Google Scholar 

  • Hill CAS, Norton A, Newman G (2009) The water vapor sorption behavior of natural fibers. J Appl Polym Sci 112:1524–1537

    CAS  Google Scholar 

  • Hill C, Norton AJ, Newman G (2010) The water vapour sorption properties of Sitka spruce determined using a dynamic vapour sorption apparatus. Wood Sci Technol 44:497–514. https://doi.org/10.1007/s00226-010-0305-y

    Article  CAS  Google Scholar 

  • Hill C, Ramsay J, Keating B, Laine K, Rautkari L, Hughes M, Constant B (2012) The water vapour sorption properties of thermally modified and densified wood. J Mater Sci 47(7):3191–3197. https://doi.org/10.1007/s10853-011-6154-8

    Article  CAS  Google Scholar 

  • Hosseinpourpia R, Adamopoulos S, Holstein N, Mai C (2017) Dynamic vapour sorption and water-related properties of thermally modified Scots pine (Pinus sylvestris L.) wood pre-treated with proton acid. Polym Degrad Stabil 138:161–168

    CAS  Google Scholar 

  • Hosseinpourpia R, Adamopoulos S, Mai C (2018) Effects of acid pre-treatments on the swelling and vapor sorption of thermally modified scots pine (Pinussylvestris L.) wood. BioResources 13(1):331–345

    CAS  Google Scholar 

  • Huang PH (1985) Electrical and thermodynamic characterization of water-vapor polymeric film system for humidity sensing. Sens Actuators 8(1):23–28

    CAS  Google Scholar 

  • Huang X, Kocaefe D, Kocaefe Y, Boluk Y, Pichette A (2012) Study of the degradation behavior of heat-treated jack pine (Pinus banksiana) under artificial sunlight irradiation. Polym Degrad Stabil 97(7):1197–1214. https://doi.org/10.1016/j.polymdegradstab.2012.03.022

    Article  CAS  Google Scholar 

  • Inagaki T, Siesler HW, Mitsui K, Tsuchikawa S (2010) Difference of the crystal structure of cellulose in wood after hydrothermal and aging degradation: a NIR spectroscopy and XRD study. Biomacromol 11(9):2300–2305. https://doi.org/10.1021/bm100403y

    Article  CAS  Google Scholar 

  • Jalaludin Z, Hill CAS, Xie Y, Samsi HW, Husain H, Awang K, Curling SF (2010) Analysis of the water vapour sorption isotherms of thermally modified acacia and sesendok. Wood Materi Sci Eng 5(3–4):194–203

    CAS  Google Scholar 

  • Jones PD, Schimleck LR, Peter GF, Daniels RF, Clark A III (2006) Nondestructive estimation of wood chemical composition of sections of radial wood strips by diffuse reflectance near infrared spectroscopy. Wood Sci Technol 40:709–720. https://doi.org/10.1007/s00226-006-0085-6

    Article  CAS  Google Scholar 

  • Jowitt R, Wagstaffe PJ (1989) The certification of water content of microcrystalline cellulose (MCC) at 10 water activities. Commission of the European Communities. Community Bureau of Reference. BCR, CRM, EUR 12429, EN, Brussels, Belgium 302

  • Kamdem DP, Pizzi A, Jermannaud A (2002) Durability of heat-treated wood. Holz Roh Werkst 60(1):1–6

    CAS  Google Scholar 

  • Kasemsiri P, Hiziroglu S, Rimdusit S (2012) Characterization of heat treated Eastern red cedar (Juniperusvirginiana L.). J Mater Process Techol 212:1324–1330. https://doi.org/10.1016/j.matprotec.2011.12.019

    Article  Google Scholar 

  • Keating BA, Hill CAS, Sun D, English R (2013) The water vapour sorption behaviour of a galactomannan cellulose nanocomposite film analysed using parallel exponential kinetics and the Kelvin-Voigt viscoelastic model. J Appl Polym Sci 129(4):2352–2359

    CAS  Google Scholar 

  • Kim G, Yun K, Kim J (1998) Effect of heat treatment on the decay resistance and the bending properties of radiata pine sapwood. Mater Organismen 32(2):101–108

    Google Scholar 

  • Kim HJ, Liu Y, French AD, Lee CM, Kim SH (2018) Comparison and validation of Fourier transform infrared spectroscopic methods for monitoring secondary cell wall cellulose from cotton fibers. Cellulose 25:49–64. https://doi.org/10.1007/s10570-017-1547-8

    Article  CAS  Google Scholar 

  • Kymäläinen M, Rautkari L, Hill CAS (2015) Sorption behaviour of torrefied wood and charcoal determined by dynamic vapour sorption. J Mater Sci 50:7673–7680. https://doi.org/10.1007/s10853-015-9332-2

    Article  CAS  Google Scholar 

  • Kymäläinen M, Ben Mlouka S, Belt T, Merk V, Liljeström V, Hänninen T, Uimonen T, Kostiainen M, Rautkari L (2018) Chemical, water vapour sorption and ultrastructural analysis of Scots pine wood thermally modified in high-pressure reactor under saturated steam. J Mater Sci 53(4):3027–3037. https://doi.org/10.1007/s10853-017-1714-1

    Article  CAS  Google Scholar 

  • Li T, Cheng D, Avramidis S, Walinder MEP, Zhou D (2017) Response of hygroscopicity to heat treatment and its relation to durability of thermally modified wood. Constr Build Mater 144:671–676

    CAS  Google Scholar 

  • Ling Z, Wang T, Makarem M, Santiago-Cintrón M, Cheng HN, Kang X, Bacher M, Potthast A, Rosenau T, King H, Delhom CD, Nam S, Edwards JV, Kim SH, Xu F, French AD (2019) Effects of ball milling on the structure of cotton cellulose. Cellulose 26:305–328. https://doi.org/10.1007/s10570-018-02230-x

    Article  CAS  Google Scholar 

  • Mahnert KC, Adamopoulos S, Koch G, Militz H (2013) Topochemistry of heat-treated and N-methylol melamine-modified wood of koto (Pterygotamacrocarpa K. Schum) and limba (Terminalia superba Engl. & Diels). Holzforschung 67(2):137–146. https://doi.org/10.1515/hf-2012-0017

    Article  CAS  Google Scholar 

  • Militz H (2002) Heat treatment of wood: European processes and their background. In: Paper presented at the proceedings of conference on enhancing the durability of lumber and engineered wood products, 11–13 Feb 2002 Kissimmee, Orlando

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Ib from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082

    CAS  PubMed  Google Scholar 

  • Olek W, Bonarski JT (2014) Effects of thermal modification on wood ultrastructure analyzed with crystallographic texture. Holzforschung 68:721–726. https://doi.org/10.1515/hf-2013-0165

    Article  CAS  Google Scholar 

  • Olek W, Majka J, Czajkowski Ł (2012) Sorption isotherms of thermally modified wood. Holzforschung 67:183–191

    Google Scholar 

  • Park S, Johnson DK, Ishizawa CI, Parilla PA, Davis MF (2009) Measuring the crystallinity index of cellulose by solid state 13C nuclear magnetic resonance. Cellulose 16(4):641–647. https://doi.org/10.1007/s10570-009-9321-1

    Article  CAS  Google Scholar 

  • Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10. https://doi.org/10.1186/1754-6834-3-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popescu CM, Hill CAS (2013) The water vapour adsorption-desorption behavior of naturally aged Tiliacordata Mill. wood. Polym Degrad Stabil 98(9):1804–1813

    CAS  Google Scholar 

  • Rautkari L, Hill CS, Curling S, Jalaludin Z, Ormondroyd G (2013) What is the role of the accessibility of wood hydroxyl groups in controlling moisture content? J Mater Sci 48:6352–6356. https://doi.org/10.1007/s10853-013-7434-2

    Article  CAS  Google Scholar 

  • Rautkari L, Honkanen J, Hill CAS, Ridley-Ellis D, Hughes M (2014) Mechanical and physical properties of thermally modified Scots pine wood in high pressure reactor under saturated steam at 120, 150 and 180 C. Eur J Wood Prod 72(1):33–41. https://doi.org/10.1007/s00107-013-0749-5

    Article  Google Scholar 

  • Rietveld H (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71

    CAS  Google Scholar 

  • Rowell RM (1980) Distribution of reacted chemicals in southern pine modified with methyl isocyanate. Wood Sci 13:102–110

    CAS  Google Scholar 

  • Rowell RM, Ibach ER, McSweeny J, Nilsson T (2009) Understanding decay resistance dimensional stability and strength changes in heat treated and acetylated wood. In: Proceedings of the 4th European conference on wood modification, Stockholm, Sweden, pp 489–502. https://doi.org/10.1080/17480270903261339

  • Sandermann W, Augustin H (1964) Chemical investigations on the thermal decomposition of wood—Part III: chemical investigation on the course of decomposition. Holz Roh Werkst 22(10):377–386

    CAS  Google Scholar 

  • Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794. https://doi.org/10.1177/004051755902901003

    Article  CAS  Google Scholar 

  • Siau JF (1995) Wood: influence of moisture on physical properties. Department of Wood Science and Forest Products, Virginia Polytechnic Institute and State University, Blacksburg

    Google Scholar 

  • Simón C, Esteban LG, de Palacios P, Fernandez FG, García-Iruela A, Martín-Sampedro R, Eugenio ME (2017) Sorption and thermodynamic properties of wood of Pinus canariensis C. Sm. ex DC. buried in volcanic ash during eruption. Wood Sci Technol 51:517–534. https://doi.org/10.1007/s00226-016-0884-3

    Article  CAS  Google Scholar 

  • Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D (2005) Determination of extractives in biomass. National Renewable Energy Laboratory (NREL) Laboratory Analytical Procedure (LAP). http://www.nrel.gov/biomass/pdfs/42619.pdf. Accessed 27 Mar 2015

  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker S (2012) Determination of structural carbohydrates and lignin in biomass. National Renewable Energy Laboratory (NREL) Laboratory Analytical Procedure (LAP). http://www.nrel.gov/biomass/pdfs/42618.pdf. Accessed 27 Mar 2015

  • Sun B, Wang Z, Liu JJ (2017) Changes of chemical properties and the water vapour sorption of Eucalyptus pellita wood thermally modified in vacuum. Wood Sci 63(2):133–139. https://doi.org/10.1007/s10086-016-1601-4

    Article  CAS  Google Scholar 

  • Tarmian A, Mastouri A (2019) Changes in moisture exclusion efficiency and crystallinity of thermally modified wood with aging. IForest 12(1):92–97. https://doi.org/10.3832/ifor2723-011

    Article  Google Scholar 

  • ThermoWood® Handbook (2003) Finnish Thermowood Association

  • Thybring EE, Thygesen LG, Burgert I (2017) Hydroxyl accessibility in wood cell walls as affected by drying and re-wetting procedures. Cellulose 24:2375–2384. https://doi.org/10.1007/s10570-017-1278-x

    Article  CAS  Google Scholar 

  • Thygesen A, Oddershede J, Lilholt H, Thomsen AB, Stahl K (2005) On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12:563–576

    CAS  Google Scholar 

  • Wang X, Chen X, Xie X, Wu Y, Zhao L, Li Y, Wang S (2018) Effects of thermal modification on the physical, chemical and micromechanical properties of Masson pine wood (Pinusmassoniana Lamb.). Holzforschung 72(12):1063–1070. https://doi.org/10.1515/hf-2017-0205

    Article  CAS  Google Scholar 

  • Wentzel M, Altgen M, Militz H (2018) Analyzing reversible changes in hygroscopicity of thermally modified eucalypt wood from open and closed reactor systems. Wood Sci Technol 52(4):889–907. https://doi.org/10.1007/s00226-018-1012-3

    Article  CAS  Google Scholar 

  • Wikberg H, Maunu S (2004) Characterisation of thermally modified hard- and softwoods by 13C CPMAS NMR. Carbohydr Polym 58:461–466

    CAS  Google Scholar 

  • Xing D, Li J (2014) Effects of heat treatment on thermal decomposition and combustion performance of Larix spp. Wood Bioresour 9(3):4274–4287

    Google Scholar 

  • Xing D, Li J, Wang X, Wang S (2016) In situ measurement of heat-treated wood cell wall at elevated temperature by nanoindentation. Ind Crops Prod 87:142–149

    CAS  Google Scholar 

  • Yildiz S, Gümüskaya E (2007) The effects of thermal modification on crystalline structure of cellulose in soft and hardwood. Build Environ 42:62–67

    Google Scholar 

  • Yin J, Yuan T, Lu Y, Song K, Li H, Zhao G, Yin Y (2017) Effect of compression combined with steam treatment on the porosity, chemical composition and cellulose crystalline structure of wood cell walls. Carbohydr Polym 155:163–172

    CAS  PubMed  Google Scholar 

  • Young RA (ed) (1993) The Rietveld method. IUCr monographs in crystallography, 5. International Union of Crystallography. Oxford University Press, New York, p 298

    Google Scholar 

  • Zelinka SL, Glass SV, Thybring EE (2018) Myth versus reality: do parabolic sorption isotherm models reflect actual wood–water thermodynamics? Wood Sci Technol 52:1701–1706. https://doi.org/10.1007/s00226-018-1035-9

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto García-Iruela.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 955 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Iruela, A., Esteban, L.G., García Fernández, F. et al. Changes in cell wall components and hygroscopic properties of Pinus radiata caused by heat treatment. Eur. J. Wood Prod. 79, 851–861 (2021). https://doi.org/10.1007/s00107-021-01678-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-021-01678-2

Navigation