Skip to main content
Log in

Voltage control approach based on PCPM distributed algorithm in the presence of high PV penetration: a stochastic modeling

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

The uncertainty of solar generation is a challenging issue for the operation and control of distribution systems. Also, because of the large number of control and operation variables in advanced distribution networks, the centralized optimization technique requires high computational capabilities. In this paper, a distributed voltage regulation approach in a distribution system based on the predictor corrector proximal multiplier (PCPM) algorithm has been presented. This paper focuses on the voltage rise in distribution systems with high penetration of photovoltaics. The proposed method uses a clustering approach to divide the network into partitions based on the coupling degrees among different nodes. The optimal reactive power control strategy is conducted in each partition and integrated using PCPM. The proposed method is tested on 69 and 123 nodes IEEE distribution test systems. The results confirmed that the proposed method achieves the optimal solution with the same accuracy as the centralized method but in a much shorter computation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Golshannavaz S (2018) Cooperation of electric vehicle and energy storage in reactive power compensation: an optimal home energy management system considering PV presence. Sustain Cities Soc 39:317–325

    Article  Google Scholar 

  2. Moradian S, Homaee O, Jadid S, Siano P (2019) Optimal placement of switched capacitors equipped with stand-alone voltage control systems in radial distribution networks. Int Trans Electr Energy Syst 29(3):e2753

    Article  Google Scholar 

  3. Jashfar S, Esmaeili S (2014) Volt/var/THD control in distribution networks considering reactive power capability of solar energy conversion. Int J Electr Power Energy Syst 60:221–233

    Article  Google Scholar 

  4. Jabr RA (2020) Segregated linear decision rules for inverter Watt-VAr control. IEEE Trans Power Syst. https://doi.org/10.1109/TPWRS.2020.3032467

    Article  Google Scholar 

  5. Karbouj H, Rather ZH, Chandra Pal B (2020) Adaptive voltage control for large scale solar PV power plant considering real life factors. IEEE Trans Sustain Energy. https://doi.org/10.1109/TSTE.2020.3029102

    Article  Google Scholar 

  6. Wang L, Ruifeng Y, Saha TK (2018) Voltage management for large scale PV integration into weak distribution systems. IEEE Trans Smart Grid 9(5):4128–4139

    Article  Google Scholar 

  7. Pezeshki H, Arefi A, Ledwich G, Wolfs P (2018) Probabilistic voltage management using OLTC and dSTATCOM in distribution networks. IEEE Trans Power Deliv 33(2):570–580

    Article  Google Scholar 

  8. Li P, Ji H, Yu H, Zhao J, Wang C, Song G, Wu J (2019) Combined decentralized and local voltage control strategy of soft open points in active distribution networks. Appl Energy 241:613–624

    Article  Google Scholar 

  9. Monadi M, Hooshyar H, Vanfretti L, Mahmood F, Candela JI, Rodriguez P (2019) Measurement-based network clustering for active distribution systems. IEEE Trans Smart Grid 10(6):6714–6723. https://doi.org/10.1109/TSG.2019.2910510

    Article  Google Scholar 

  10. Nayeripour M, Fallahzadeh-Abarghouei H, Waffenschmidt E, Hasanvand S (2016) Coordinated online voltage management of distributed generation using network partitioning. Electr Power Syst Res 141:202–209

    Article  Google Scholar 

  11. Zhao B, Xu Z, Xu C, Wang C, Lin F (2018) Network partition-based zonal voltage control for distribution networks with distributed PV systems. IEEE Trans Smart Grid 9(5):4087–4098

    Article  Google Scholar 

  12. Ding J, Zhang Q, Hu S, Wang Q, Ye Q (2018) Clusters partition and zonal voltage regulation for distribution networks with high penetration of PVs. IET Gener Transm Distrib 12(22):6041–6051

    Article  Google Scholar 

  13. Biskas PN, Bakirtzis AG, Macheras NI, Pasialis NK (2005) A decentralized implementation of DC optimal power flow on a network of computers. IEEE Trans Power Syst 20(1):25–33

    Article  Google Scholar 

  14. Anjos M, Lodi A, Tanneau M (2018) A decentralized framework for the optimal coordination of distributed energy resources. IEEE Trans Power Syst 34(1):349–359

    Article  Google Scholar 

  15. Brooks J, Trevizan RD, Barooah P, Bretas AS (2019) Analysis and evaluation of a distributed optimal load coordination algorithm for frequency control. Electr Power Syst Res 167:86–93

    Article  Google Scholar 

  16. Duan J (2018) M-Y Chow, A novel data integrity attack on consensus-based distributed energy management algorithm using local information. IEEE Trans Ind Inf 15(3):1544–1553

    Article  Google Scholar 

  17. Rokni SGM, Radmehr M, Zakariazadeh A (2018) Optimum energy resource scheduling in a microgrid using a distributed algorithm framework. Sustain Cities Soc 37:222–231

    Article  Google Scholar 

  18. Lai K, Illindala MS (2018) A distributed energy management strategy for resilient shipboard power system. Appl Energy 228:821–832

    Article  Google Scholar 

  19. Chamana M, Chowdhury BH, Jahanbakhsh F (2018) Distributed control of voltage regulating devices in the presence of high PV penetration to mitigate ramp-rate issues. IEEE Trans Smart Grid 9(2):1086–1095

    Article  Google Scholar 

  20. Jabr RA (2018) Linear decision rules for control of reactive power by distributed photovoltaic generators. IEEE Trans Power Syst 33(2):2165–2174

    Article  Google Scholar 

  21. Kim BH, Baldick R (2000) A comparison of distributed optimal power flow algorithms. IEEE Trans Power Syst 15(2):599–604

    Article  Google Scholar 

  22. Li N, Chen L, Low SH (2012) Demand response in radial distribution networks: distributed algorithm. In: 2012 Conference record of the forty sixth Asilomar conference on signals, systems and computers (ASILOMAR). IEEE, pp 1549–1553

  23. Shi W, Xiaorong X, Chu C, Gadh R (2014) Distributed optimal energy management in microgrids. IEEE Trans Smart Grid 6(3):1137–1146

    Article  Google Scholar 

  24. Silani A, Yazdanpanah MJ (2018) Distributed optimal microgrid energy management with considering stochastic load. IEEE Trans Sustain Energy 10(2):729–737

    Article  Google Scholar 

  25. Ela E, Diakov V, Ibanez E, Heaney M (2013) Impacts of variability and uncertainty in solar photovoltaic generation at multiple timescales. In: No. NREL/TP-5500-58274. National Renewable Energy Lab. (NREL), Golden, CO

  26. Shi W, Gadh R (2015). Energy management in microgrids: algorithms and system. Ph.D. Dissertation, Department of Electrical and Computer Engineering, University of California, Los Angeles

  27. Albuquerque FL, Moraes AJ, Guimarães GC, Sanhueza SMR, Vaz AR (2010) Photovoltaic solar system connected to the electric power grid operating as active power generator and reactive power compensator. Sol Energy 84:1310–1317

    Article  Google Scholar 

  28. Calderaro V, Conio G, Galdi V, Massa G, Piccolo A (2014) Optimal decentralized voltage control for distribution systems with inverter-based distributed generators. IEEE Trans Power Syst 29:230–241

    Article  Google Scholar 

  29. Girvan M, Newman MEJ (2002) Community structure in social and biological networks. Proc Natl Acad Sci 99(12):7821–7826

    Article  MathSciNet  Google Scholar 

  30. Borowy BS, Salameh ZM (1994) Optimum photovoltaic array size for a hybrid wind/PV system. IEEE Trans Energy Convers 9:482–488

    Article  Google Scholar 

  31. Salameh ZM, Borowy BS, Amin ARA (1995) Photovoltaic module-site matching based on the capacity factors. IEEE Trans Energy Convers 10:326–332

    Article  Google Scholar 

  32. Youcef F, Mefti A, Adane A, Bouroubi MY (2002) Statistical analysis of solar measurements in Algeria using beta distributions. Renew Energy 26:47–67

    Article  Google Scholar 

  33. Atwa YM, El-Saadany EF, Salama MMA, Seethapathy R (2010) Optimal renewable resources mix for distribution system energy loss minimization. IEEE Trans Power Syst 25:360–370

    Article  Google Scholar 

  34. Chedid R, Akiki H, Rahman S (1995) A decision support technique for the design of hybrid solar-wind power systems. IEEE Trans Energy Convers 13:76–83

    Article  Google Scholar 

  35. Low SH (2014) Convex relaxation of optimal power flow—Part I: formulations and equivalence. IEEE Trans Control Netw Syst 1(1):15–27

    Article  MathSciNet  Google Scholar 

  36. Low SH (2014) Convex relaxation of optimal power flow—Part II: exactness. IEEE Trans Control Netw Syst 1(2):177–189

    Article  MathSciNet  Google Scholar 

  37. Li N, Chen L, Low SH (2012) Exact convex relaxation of OPF for radial networks using branch flow model. In Proceedings of the IEEE international conference on smart grid communication (SmartGridComm), Tainan, Nov. 2012, pp 7–12

  38. Gan L, Li N, Topcu U, Low SH (2012) On the exactness of convex relaxation for optimal power flow in tree networks. In: Proceedings of the IEEE conference decision control (CDC), Maui, HI, USA, Dec. 2012, pp 465–471

  39. Baran ME, Wu FF (1989) Optimal sizing of capacitors placed on a radial distribution system. IEEE Trans Power Deliv 4(1):735–743

    Article  Google Scholar 

  40. Dall’Anese E, Dhople SV, Giannakis GB (2014) Optimal dispatch of photovoltaic inverters in residential distribution systems. IEEE Trans Sustain Energy 5(2):487–497

    Article  Google Scholar 

  41. Chen G, Teboulle M (1994) A proximal-based decomposition method for convex minimization problems. Math Program 64(1):81–101

    Article  MathSciNet  Google Scholar 

  42. Mousavi Maleki SA, Hizam H, Gomes C (2017) Estimation of hourly, daily and monthly global solar radiation on inclined surfaces: models re-visited. Energies 10(1):134

    Article  Google Scholar 

  43. Whitley D (1994) A genetic algorithm tutorial. Stat Comput 4(2):65–85

    Article  Google Scholar 

  44. Cagnano A, De Tuglie E (2015) Centralized voltage control for distribution networks with embedded PV systems. Renew Energy 76:173–185

    Article  Google Scholar 

  45. Wang Yamin, Lei Wu, Wang Shouxiang (2016) A fully-decentralized consensus-based ADMM approach for DC-OPF with demand response. IEEE Trans Smart Grid 8(6):2637–2647

    Article  Google Scholar 

  46. Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011) Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn 3(1):1–122

    Article  Google Scholar 

  47. IEEE PES, Distribution test feeders. http://www.ewh.ieee.org/soc/pes/dsacom/testfeeders/index.html

  48. EN 50160 (1999) Voltage characteristics of electricity supplied by public distribution systems

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Asghar Gholamian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousefi, H., Gholamian, S.A. & Zakariazadeh, A. Voltage control approach based on PCPM distributed algorithm in the presence of high PV penetration: a stochastic modeling. Electr Eng 103, 2561–2572 (2021). https://doi.org/10.1007/s00202-021-01249-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-021-01249-x

Keywords

Navigation