Skip to main content
Log in

Sobolev LVG Analysis of Prebiotic Molecule Formamide (NH2CHO) Found in the ISM

  • Published:
Astrophysics Aims and scope

Using known values of rotational and centrifugal distortion constants in conjunction with electric dipole moment of NH2CHO, we have calculated energies of rotational levels in the ground vibrational state, and the probabilities for radiative transitions between the levels. The radiative transition probabilities in conjunction with the scaled values of collisional rate coefficients are used in the Sobolev LVG analysis of NH2CHO. There are some strong lines. For ortho-NH2CHO, we have found one transition 110-111 showing anomalous absorption and five transitions 615-514, 717-616, 716-615, 818-717, 817-716 showing emission feature. For para-NH2CHO, six emission transitions 505-404, 606-505, 707-606, 808-707, 909-808, 100.10-909 are found. Out of these 12 transitions, three transitions, 110-111, 505-404, and 808-707, are already found in the ISM. Other relatively weaker lines are also found in the ISM. In addition to the observed lines, 9 transitions may play important role in the identification of NH2CHO in a cosmic object.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Saladino, C. Crestini, G. Costanzo et al., Top. Curr. Chem., 259, 29, 2005.

    Article  Google Scholar 

  2. V. S. Nguyen, H. L. Abbott, M. M. Dawley et al., J. Phys. Chem. A, 115, 841, 2011.

    Article  Google Scholar 

  3. H. Bredereck, R. Gompper, H. G. V. Schuh et al., Angew. Chem., 71, 753, 1959.

    Article  Google Scholar 

  4. T. Okamoto, M. Toshihiko, H. Yamada et al., Jpn Kokai Tokkyo Koho, 3, 1, 1972.

    Google Scholar 

  5. R. Saladino, C. Crestini, G. Costanzo et al., Bioorg. Med. Chem., 9, 1249, 2001.

    Article  Google Scholar 

  6. R. Saladino, U. Ciambecchini, and C. Crestini, Chembiochem, 4, 514, 2003.

    Article  Google Scholar 

  7. R. Saladino, C. Crestini, U. Ciambecchini et al., Chembiochem, 5, 1558, 2004.

    Article  Google Scholar 

  8. R. Saladino, C. Crestini, V. Neri et al., Chembiochem, 7, 1707, 2006.

    Article  Google Scholar 

  9. G. Costanzo, R. Saladino, C. Crestini et al., BMC Evol. Biol., 7, 1, 2007.

    Article  Google Scholar 

  10. H. L. Barks, R. Buckley, and G. A. Grieves, Guanine, Chembiochem, 11, 1240, 2010.

    Article  Google Scholar 

  11. S. D. Senanayake and H. Idriss, Proc. Nat. Acad. Sci., 103, 1194, 2006.

    Article  ADS  Google Scholar 

  12. R. Saladino, M. Barontini, C. Cossetti et al., Orig. Life. Evol. Biosph., 41, 317, 2011.

    Article  ADS  Google Scholar 

  13. R. Saladino, C. Crestini, C. Cossetti et al., Orig. Life. Evol. Biosph., 41, 437, 2011.

    Article  ADS  Google Scholar 

  14. M. Lattelais, F. Pauzat, Y. Ellinger et al., Astron. Astrophys., 519, A30, 2010.

    Article  Google Scholar 

  15. R. J. Kurland and E. B. Wilson Jr, J. Chem. Phys., 27, 585, 1957.

    Article  ADS  Google Scholar 

  16. R. H. Rubin, G. W. Swenson Jr, R. C. Benson et al., Astrophys. J., 169, L39, 1971.

  17. C. A. Gottlieb, P. Palmer, and L. J. Rickard, Astrophys. J., 182, 699, 1973.

    Article  ADS  Google Scholar 

  18. C. Kahane, C. Ceccarelli, A. Faure et al., Astrophys. J. Lett., 763, L38, 2013.

    Article  ADS  Google Scholar 

  19. V. Thiel, A. Belloche, K. M. Menten et al., Astron. Astrophys., 605, L6, 2017.

    Article  ADS  Google Scholar 

  20. A. Coutens, J. K. Jrgensen, M. H. D. Van der Wiel et al., Astron. Astrophys., 590, L6, 2016.

    Article  ADS  Google Scholar 

  21. R. J. Kurland, J. Chem. Phys., 23, 2202, 1955.

    Article  ADS  Google Scholar 

  22. C. C. Costain and J. M. Dowling, J. Chem. Phys., 32, 158, 1960.

    Article  ADS  Google Scholar 

  23. R. A. Motiyenko and B. Tercero, J. Cernicharo et al., Astron. Astrophys., 548, A71, 2012.

    Article  Google Scholar 

  24. Z. Kisiel, J. Demaison et al., Spectroscopy from Space, PROSPE Programs for Rotational Spectroscopy, Kluwer Academic Publishers, Institute of Physics, Academy of Science, Warsaw, Dordrecht, 91, 2001.

  25. M. K. Sharma, M. Sharma, U. P. Verma et al., Adv. Space Res., 54, 1963, 2014.

    Article  ADS  Google Scholar 

  26. M. Sharma, M. K. Sharma, U. P. Verma et al., Adv. Space Res., 54, 252, 2014.

    Article  ADS  Google Scholar 

  27. M. K. Sharma, M. Sharma, U. P. Verma et al., Adv. Space Res., 55, 434, 2015.

    Article  ADS  Google Scholar 

  28. M. K. Sharma, M. Sharma and S. Chandra, Astrophys. Space Sci., 362, 168, 2017.

    Article  ADS  Google Scholar 

  29. M. K. Sharma, M. Sharma and S. Chandra, Astrophys. Space Sci., 363, 94, 2018.

    Article  ADS  Google Scholar 

  30. M. K. Sharma, M. Sharma and S. Chandra, Mol. Astrophys., 12, 20, 2018.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sharma.

Additional information

Published in Astrofizika, Vol. 64, No. 1, pp. 95-105 (February, 2021).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, M.K., Mampatta, V.D., Sharma, M. et al. Sobolev LVG Analysis of Prebiotic Molecule Formamide (NH2CHO) Found in the ISM. Astrophysics 64, 81–90 (2021). https://doi.org/10.1007/s10511-021-09670-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-021-09670-7

Keywords

Navigation