Skip to main content
Log in

Distribution-free testing in linear and parametric regression

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

Recently, a distribution-free approach for testing parametric hypotheses based on unitary transformations has been suggested in Khmaladze (Ann Stat 41:2979–2993, 2013, Bernoulli 22:563–588, 2016) and further studied in Nguyen (Metrika 80:153–170, 2017) and Roberts (Stat Probab Lett 150:47–53, 2019). In this paper, we show that the transformation takes very simple form in distribution-free testing of linear regression. Then, we extend it to the general parametric regression with vector-valued covariates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bancolita J. (2019). Numerical investigation of Khmaladze projection approach in regression, Research Report, School of Mathematics and Statistics, Victoria University of Wellington.

  • Bates, D. M., Watts, D. G. (2007). Nonlinear regression analysis and its applications, 2nd ed. New York: Wiley.

    MATH  Google Scholar 

  • Can, S. U., Einmahl, J. H. J., Laeven, R. (2020). Distribution free two-sample test for tail copulas, Work in progress.

  • Chown, J., Müller, U. U. (2018). Detecting heteroscedasticity in non-parametric regression using weighted empirical processes. Journal Royal Statistical Society, B, 80, 961–974.

    Article  MathSciNet  Google Scholar 

  • Cook, R., Weisberg, S. (1982). Residuals and influence in regression. Boca Raton: Chapman and Hall.

    MATH  Google Scholar 

  • Cuesta-Albertos, J. A., Matrán, C., Tuego-Diaz, A. (1997). Optimal transportation plans and convergence in distribution. Journal Multivariate Analysis, 60, 72–83.

    Article  MathSciNet  Google Scholar 

  • de Valk, C., Segers, J. (2018). Stability and tail limits of transport-based quantile contours, arXiv:1811.12061.

  • del Barrio, E., Cuesta-Albertos, J. A., Hallin, M., Matrán, C. (2018). Center-outward distribution functions, quantiles, ranks, and signs in \(R^d\), arXiv:1806.01238.

  • Dette, H., Hetzler, B. (2009). A simple test for the nonparametric form of the variance function in nonparametric regression. Annals Institute Statistical Mathematics, 61, 861–886.

    Article  MathSciNet  Google Scholar 

  • Dette, H., Munk, A. (1998). Testing heteroscedasticity in nonparametric regression. Journal Royal Statistical Society, B, 60, 693–708.

    Article  MathSciNet  Google Scholar 

  • Dette, H., Neumeyer, N., Van Keilegom, I. (2007). A new test for the parametric form of the variance function in non-parametric regression. Journal Royal Statistical Society, B, 69, 903–917.

    Article  MathSciNet  Google Scholar 

  • Einmahl, J. H. J., Khmaladze, E. V. (2001). Two-sample problem in \(R^m\) and measure-valued martingales, State of the Art in Statistics and Probability Theory; Festschrift for Willem R. van Zwet. IMS Lecture Notes-Monograph Series, 36, 434–464.

    Article  Google Scholar 

  • Gonzalez-Manteiga, W., Crujeiras, R. M. (2013). An updated review of Goodness-of-Fit tests for regression models. TEST, 22, 361–447.

    Article  MathSciNet  Google Scholar 

  • Hajek, J., Sidak, Z. (1967). Theory of rank tests. New York: Academic Press.

    MATH  Google Scholar 

  • Harrell, F. E., Jr. (2015). Regression modelling strategies, 2nd ed. Berlin: Springer.

    Book  Google Scholar 

  • Khmaladze, E. V. (1993). Goodness of fit problems and scanning innovation martingales. Annals of Statistics, 21, 798–829.

    Article  MathSciNet  Google Scholar 

  • Khmaladze, E. V. (2013). Note on distribution free testing for discrete distributions. Annals of Statistics, 41, 2979–2993.

    Article  MathSciNet  Google Scholar 

  • Khmaladze, E. (2016). Unitary transformations, empirical processes and distribution free testing. Bernoulli, 22, 563–588.

    Article  MathSciNet  Google Scholar 

  • Khmaladze, E. V. (2020). Projection approach to distribution-free testing for point processes. Regular models. Transactions of A. Razmadze Mathematical Institute, 174, 155–176.

    MathSciNet  MATH  Google Scholar 

  • Khmaladze, E. V., Koul, H. L. (2004). Martingale transforms goodness of fit tests in regression models. Annals of Statistics, 32, 955–1034.

    Article  MathSciNet  Google Scholar 

  • Koenker, R. (2005). Quantile regression. New York: Cambridge University Press.

    Book  Google Scholar 

  • Koul, H. L., Müller, U. U., Schick, A. (2017). Estimating the error distribution in a single-index model, From statistics to mathematical finance, festschrift in honour of Winfried stute, In Dietmar Ferger, Wenceslao Gonzalez-Manteiga, Thorsten Schmidt, Jane-Ling Wang (Eds.) Springer, Heidelberg, Berlin.

  • Kuhn, H. W. (1956). Variants of the Hungarian method for assignment problems. Naval Research Logistics Quarterly, 3, 253–258.

    Article  MathSciNet  Google Scholar 

  • McCullagh, P., Nelder, J. A. (2008). An introduction to generalized linear models, 3rd ed. Boca Raton: Chapman & Hall/ CRC Monographs on Statistics.

    MATH  Google Scholar 

  • Müller, U. U., Schick, A., Wefelmeyer, W. (2009). Estimating the innovation distribution in nonparametric autoregression. Probability Theory Related Fields, 144, 53–77.

    Article  MathSciNet  Google Scholar 

  • Nguyen, T. T. M. (2017). New approach to distribution free tests in contingency tables. Metrika, 80, 153–170.

    Article  MathSciNet  Google Scholar 

  • Peyré, G., Cuturi, M. (2019). Computational optimal transport, arXiv:1803.00567v2 [statML].

  • Roberts, L. (2019). On distribution free goodness of fit testing of Bernoulli trials. Statistics and Probability Letters, 150, 47–53.

    Article  MathSciNet  Google Scholar 

  • Stute, W. (1997). Nonparametric model checks for regression. Annals of Statistics, 25, 613–641.

    Article  MathSciNet  Google Scholar 

  • Tomizawa, N. (1971). On some techniques useful for solution of transportation network problems. Networks, 1(2), 173–194.

    Article  MathSciNet  Google Scholar 

  • Villani, C. (2009). Optimal transport: Old and new. Berlin: Springer.

    Book  Google Scholar 

Download references

Acknowledgements

For the results, shown in Figs. 2, 3, 4 and 5 and many more experiments, not included here, the author is grateful to his student at the time, Richard White. Author is also grateful to the referees for patience with many imperfections of the initial draft and for the number of useful advice. Careful reading by Sara Algeri greatly helped to improve the text at the final stages.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Estate V. Khmaladze.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khmaladze, E.V. Distribution-free testing in linear and parametric regression. Ann Inst Stat Math 73, 1063–1087 (2021). https://doi.org/10.1007/s10463-021-00786-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-021-00786-3

Keywords

Navigation