Skip to main content
Log in

The Use of the NAMI-DANCE Computational Complex on the Problem of Tsunami Waves

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

Mathematical models that are applicable to the simulation of the generation and propagation of tsunami waves from different sources, that is, underwater earthquakes, submarine landslides, and meteotsunamis, are described. The models are based on the well-known nonlinear shallow-water theory and its dispersion generalizations in two horizontal dimensions. Long wave dispersion related to the finiteness of water depth increases the order of the initial equations and, as a consequence, the time of computation. For this reason, physical dispersion in the investigations presented in this paper is replaced by numerical dispersion owing to a special choice of spatial and temporal steps. The numerical scheme for solving the shallow water equations is based on the leapfrog method. The equations are solved in spherical coordinates fixed to the rotating Earth with allowance for dissipative effects in the near-bottom layer with the use of the developed NAMI-DANCE code. For waves of seismic origin, the initial conditions for solving the hydrodynamic equations are taken from the solution of an elasticity theory problem to describe earthquake evolution (the Okada solution). In the case of a meteotsunami, atmospheric factors are taken into account as external forces and included in the right-hand sides of shallow water equations. Finally, generation of tsunami waves by submarine landslides is considered within the framework of a two-layer model with a lower viscous layer modeling the motion of the landslide. Two kinds of boundary conditions are used: free wave passage through open boundaries (in straits, etc.) using linear shallow-water equations and full reflection on the coast or in the near-shore area. Some test problems (benchmarks) on which the computational complex was verified are listed. The difficulties in the representation of tsunami characteristics due to bad data on the bottom bathymetry and topography of the land are mentioned. The possibility of using the developed code for the analysis of tsunami action on coasts and constructions is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Omira, R., Dogan, G.G., Hidayat, R., Husrin, S., Prasetya, G., Annunziato, A., Proietti, C., Probst, P., Paparo, M.A., Wronna, M., Zaytsev, A., Pronin, P., Giniyatullin, A., Putra, P.S., Hartanto, D., et al., The September 28th, 2018, tsunami in Palu-Sulawesi, Indonesia: A post-event field survey, Pure Appl. Geophys., 2019, vol. 176, pp. 1379–1395. https://doi.org/10.1007/s00024-019-02145-z

    Article  ADS  Google Scholar 

  2. Giachetti, T., Paris, R., Kelfoun, K., and Ontowirjo, B., Tsunami hazard related to a flank collapse of anak krakatau volcano, Sunda Strait, Indonesia, Geol. Soc. London, Spec. Publ., 2012, vol. 361, pp. 79–90. https://doi.org/10.1144/SP361.7

    Article  ADS  Google Scholar 

  3. Chubarov, D.L., Ice tsunami in the Bureiskaya HPP basin. http://sdc.esemc.nsc.ru/node/102. Accessed March 28, 2019.

  4. Meteotsunami floods islands of Mallorca and Menorca, Spain. http://scienceglobalnews.com/environment/meteotsunami-floods-islands-of-mallorca-and-menorca-spain. Accessed March 28, 2019.

  5. Stoker, J.J., Water Waves. The Mathematical Theory with Applications, New York: Interscience, 1957.

    MATH  Google Scholar 

  6. Kochin, N.E., Kibel’, I.A., and Rose, N.V., Theoretical Hydromechanics, New York: Interscience, 1964.

    Google Scholar 

  7. Sretenskii, L.N., Teoriya volnovykh dvizhenii zhidkosti (Theory of Fluid Wave Motion), Moscow: Nauka, 1977.

  8. Loytsyanskiy, L.G., Mekhanika zhidkosti i gaza (Mechanics of Fluid and Gas), Moscow: Drofa, 2003.

  9. Murty, T.S., Seismic Sea Waves. Tsunamis, Ottawa: Dep. Fisheries and the Environ. Fisheries and Marine Service, 1977.

    Google Scholar 

  10. Marchuk, A.G., Chubarov, L.B., and Shokin, Yu.I., Chislennoe modelirovanie voln tsunami (Numerical Modeling of Tsunami Waves), Novosibirsk: Nauka, 1983.

  11. Shokin, Yu.I., Chubarov, L.B., Marchuk, A.G., and Simonov, K.V., Vychislitel’nyi eksperiment v probleme tsunami (Computational Experiment in Tsunami Problem), Novosibirsk: Nauka, 1989.

  12. Pelinovskiy, E.N., Gidrodinamika voln tsunami (Hydrodynamics of Tsunami Waves), Nizhny Novgorod: IPF RAN, 1996.

  13. Levin, B. and Nosov, M., Physics of Tsunamis, Berlin: Springer, 2009.

    Google Scholar 

  14. Synolakis, C., Bernard, E.N., Titov, V.V., Kânoğlu, U., and González, F.I., Validation and verification of tsunami numerical models, Pure Appl. Geophys., 2008, vol. 165, pp. 2197–2228. https://doi.org/10.1007/s00024-004-0427-y

    Article  ADS  Google Scholar 

  15. Liu, P.L.-F., Yeh, H., and Synolakis, C., Benchmark problems, in Advanced Numerical Models for Simulating Tsunami Waves and Runup, Liu, P.L.-F., Yeh, H., and Synolakis, C., Eds., Singapore: World Scientific, 2008, pp. 223–230.

    Book  Google Scholar 

  16. Lynett, P.J., Montoya, L., Gately, K., et al., Inter-model analysis of tsunami-induced coastal currents, Ocean Model., 2017, vol. 114, pp. 14–32. https://doi.org/10.1016/j.ocemod.2017.04.003

    Article  ADS  Google Scholar 

  17. http://namidance.ce.metu.edu.tr/. Acessed March 28, 2019.

  18. Vol'tsinger, N.E., Klevanyy, K.A., and Pelinovskiy, E.N., Dlinnovolnovaya dinamika pribrezhnoi zony (Long-Wave Dynamics of the Coastal Zone), Leningrad: Gidrometeoizdat, 1989.

  19. Choi, J., Kwon, K.K., and Yoon, S.B., Tsunami inundation simulation of a built-up area using equivalent resistance coefficient, Coast. Eng. J., 2012, vol. 54, pp. 1250015–1–1250015–25. https://doi.org/10.1142/S0578563412500155

  20. Kulikov, E.A., Gusiakov, V.K., Ivanova, A.A., and Baranov, B.V., Numerical tsunami modeling and the bottom relief, Mosc. Univ. Phys. Bull., 2016, vol. 71, no. 6, pp. 527–536. https://doi.org/10.3103/S002713491605012X

    Article  ADS  Google Scholar 

  21. Ivanova, A.A., Kulikov, E.A., and Fain, I.V., On modelling 2006, 2007 Simushir tsunamis in the central Kuril region, Fundam. Prikl. Gidrofiz., 2017, vol. 10, no. 3, pp. 56–64. https://doi.org/10.7868/S2073667317030042

    Article  Google Scholar 

  22. Dilmen, D.I., Kemec, S., Yalciner, A.C., Düzgün, S., and Zaytsev, A., Development of a tsunami inundation map in detecting tsunami risk in gulf of Fethiye, Turkey, Pure Appl. Geophys., 2015, vol. 172, pp. 921–929. https://doi.org/10.1007/s00024-014-0936-2

    Article  ADS  Google Scholar 

  23. Goto, C., Ogawa, Y., Shuto, N., and Imamura, F., IUGG/IOC TIME Project: Numerical Method of Tsunami Simulation with the Leap-Frog Scheme. Manuals and Guides, Paris: Intergovern. Oceanogr. Commission of UNESCO, 1997, no. 35.

  24. Nosov, M.A., Applicability of long-wave approximation to the description of tsunami dynamics, Uch. Zap. Fiz. Fak. Mosk. Univ., 2017, no. 4, p. 1740503.

  25. Peregrine, D.H., Long waves on a beach, J. Fluid Mech., 1967, vol. 27, pp. 815–827. https://doi.org/10.1017/S0022112067002605

    Article  MATH  ADS  Google Scholar 

  26. Khakimzyanov, G., Dutykh, D., Fedotova, Z., and Mitsotakis, D., Dispersive shallow water wave modelling. Part I: Model derivation on a globally flat space, Commun. Comput. Phys., 2018, vol. 23, pp. 1–29. https://doi.org/10.4208/cicp.OA-2016-0179a

    Article  MathSciNet  Google Scholar 

  27. Pelinovskiy, E.N., Nonlinear-dispersion theory of tsunami waves: A look after the catastrophic tsunami in the Indian Ocean, in Nelineinye volny'2006 (Nonlinear Waves 2006), Nizhny Novgorod, IPF RAN, 2007, pp. 393–407.

  28. Fedotova, Z.I., Khakimzyanov, G.S., and Gusev, O.I., History of the development and analysis of numerical methods for solving nonlinear dispersive equations of hydrodynamics. I. One-dimensional models problems, Zh. Vychisl. Tekhnol., 2015, vol. 20, no. 5, pp. 120–156.

    MATH  Google Scholar 

  29. Shokin, Yu.I., Fedotova, Z.I., and Khakimzyanov, G.S., Hierarchy of nonlinear models of the hydrodynamics of long surface waves, Dokl. Phys., 2015, vol. 60, no. 5, pp. 224–228. https://doi.org/10.1134/S1028335815050079

    Article  ADS  Google Scholar 

  30. Kirby, J.T., Wei, G., Chen, Q., Kennedy, A.B., and Dalrymple, R.A., Funwave 1.0. Fully Nonlinear Boussinesq Wave Model – Documentation and User’s Manual, Delaware: Univ. Delaware, 1998.

    Google Scholar 

  31. Cheung, K.F., Phadke, A.C., Wei, Y., Rojasa, R., Douyere, Y.J.-M., Martino, C.D., Houston, S.H., Liu, P.L.-F., Lynett, P.J., Dodd, N., Liao, S., and Nakazaki, E., Modeling of storm-induced coastal flooding for emergency management, Ocean Eng., 2003, vol. 30, pp. 1353–1386. https://doi.org/10.1016/S0029-8018(02)00133-6

    Article  Google Scholar 

  32. Lovholt, F. and Pedersen, G., Instabilities of Boussinesq models in nonuniform depth, Int. J. Numer. Meth. Fluids, 2009, vol. 61, pp. 606–637. https://doi.org/10.1002/fld.1968

    Article  MATH  Google Scholar 

  33. Yoon, S.B., Propagation of distant tsunamis over slowly varying topography, J. Geophys. Res., 2002, vol. 107, no. C10, pp. 4-1–4-11. https://doi.org/10.1029/2001JC000791

  34. Yoon, S.B., Lim, C.H., and Choi, J., Dispersion-correction finite difference model for simulation of transoceanic tsunamis, Terr. Atmos. Ocean. Sci., 2007, vol. 18, pp. 31–53.

    Article  Google Scholar 

  35. Velioglu, D., Kian, R., Yalciner, A.C., and Zaytsev, A., Performance assessment of NAMI DANCE in tsunami evolution and currents using a benchmark problem, J. Mar. Sci. Eng., 2016, vol. 4, p. 49. https://doi.org/10.3390/jmse4030049

    Article  Google Scholar 

  36. Kian, R., Horrillo, J., Zaytsev, A., and Yalciner, A.C., Capturing physical dispersion using a nonlinear shallow water model, J. Mar. Sci. Eng., 2018, vol. 6, p. 84. https://doi.org/10.3390/jmse6030084

    Article  Google Scholar 

  37. Okada, Y., Surface deformation due to shear and tensile faults in a half-space, Bull. Seismol. Soc. Am., 1985, vol. 75, pp. 1135–1154.

    Google Scholar 

  38. Lobkovskiy, L.I. and Baranov, B.V., Keyboard model of strong earthquakes in island arcs and active continental margins, Dokl. Akad. Nauk SSSR, 1984, vol. 275, no. 4, pp. 843–847.

    Google Scholar 

  39. Lobkovsky, L.I., Rabinovich, A.B., Kulikov, E.A., Ivashchenko, A.I., Fine, I.V., Thomson, R.E., Ivelskaya, T.N., and Bogdanov, G.S., The Kuril Earthquakes and tsunamis of November 15, 2006, and January 13, 2007: Observations, analysis, and numerical modelling, Oceanology, 2009, vol. 49, no. 2, pp. 166–181. https://doi.org/10.1134/S0001437009020027

    Article  ADS  Google Scholar 

  40. Zaytsev, A., Kostenko, I., Kurkin, A., Pelinovsky, E., and Yalciner, A.C., The depth effect of the earthquakes on tsunami heights in the Okhotsk Sea, Turk. J. Earth. Sci., 2016, vol. 25, pp. 289–299. https://doi.org/10.3906/yer-1509-6

    Article  Google Scholar 

  41. Aytore, B., Yalciner, A.C., Zaytsev, A., Cankaya, Z.C., and Suzen, M.L., Assessment of tsunami resilience of Haydrapasa port in the Sea of Marmara by high resolution numerical modeling, Earth, Planets Space, 2016, vol. 68, pp. 139–150. https://doi.org/10.1186/s40623-016-0508-z

    Article  ADS  Google Scholar 

  42. Zaytsev, A., Kostenko, I., Kurkin, A., Pelinovsky, E., and Pararas-Carayannis, G., Manifestation of the 1963 Urup tsunami on Sakhalin: Observations and modeling, Sci. Tsunami Hazards, 2017, vol. 36, pp. 145–166.

    Google Scholar 

  43. Kostenko, I.S., Zaytsev, A.I., Minaev, D.D., Pelinovsky, E.N., Kurkin, A.A., and Oshmarina, O.E., The Moneron tsunami of September 5, 1971, and its manifestation on the Sakhalin island coast: Numerical simulation results, Izv. Atmos. Ocean. Phys., 2018, vol. 54, pp. 1–9. https://doi.org/10.1134/S0001433818010085

    Article  Google Scholar 

  44. Tufekci, D., Suzen, M.L., Yalciner, A.C., and Zaytsev, A., Revised MeTHuVA method for assessment of tsunami human vulnerability of Bakirkoy district, Istanbul, Nat. Hazards, 2018, vol. 90, pp. 943–974. https://doi.org/10.1007/s11069-017-3082-1

    Article  Google Scholar 

  45. Sassa, S. and Takagawa, T., Liquefied gravity flow-induced tsunami: First evidence and comparison from the 2018 Indonesia Sulawesi earthquake and tsunami disasters, Landslides, 2019, vol. 16, pp. 195–200. https://doi.org/10.1007/s10346-018-1114-x

    Article  Google Scholar 

  46. Yalciner, A.C., Zaytsev, A., Aytore, B., Insel, I., Heidarzadeh, M., Kian, R., and Imamura, F., A possible submarine landslide and associated tsunami at the northwest Nile Delta, Mediterranean Sea, Oceanography, 2014, vol. 27, pp. 68–75. https://doi.org/10.5670/oceanog.2014.41

    Article  Google Scholar 

  47. Imamura, F. and Imteaz, M.A., Long waves in two layer: Governing equations and numerical model, Sci. Tsunami Hazards, 1995, vol. 13, pp. 3–24.

    Google Scholar 

  48. Pelinovsky, E. and Poplavsky, A., Simplified model of tsunami generation by submarine landslides, Phys. Chem. Earth., 1996, vol. 21, no. 12, pp. 13–17. https://doi.org/10.1016/s0079-1946(97)00003-7

    Article  ADS  Google Scholar 

  49. Kulikov, E.A., Rabinovich, A.B., Fain, I.V., Bornhold, B.D., and Thomson, R.E., Tsunami generation by landslides at the Pacific coast of North America and the role of tides, Oceanology, 1998, vol. 38, pp. 323–328.

    Google Scholar 

  50. Garagash, I.A., Lobkovskii, L.I., Kozyrev, O.R., and Mazova, R.Kh., Generation and runup of tsunami waves at an submarine landslide, Oceanology, 2003, vol. 43, no. 2, pp. 173–181.

    Google Scholar 

  51. Beizel, S.A., Khakimzyanov, G.S., and Chubarov, L.B., Simulation of surface waves generated by an underwater landslide moving along a spatially irregular slope, Zh. Vychisl. Tekhnol., 2010, vol. 15, no. 3, pp. 39–51.

    MATH  Google Scholar 

  52. Park, V.V., Modeling the evolution of three-layered Stokes flow and some geophysical applications, Vychisl. Mekh. Splosh. Sred, 2018, vol. 11, no. 3, pp. 275–287. https://doi.org/10.7242/1999-6691/2018.11.3.21

    Article  Google Scholar 

  53. Pudasaini, S.P. and Hutter, K., Avalanche Dynamics: Dynamics of Rapid Flows of Dense Granular Avalanches, Berlin: Springer, 2007.

    Google Scholar 

  54. Pattiaratchi, C.B. and Wijeratne, E.M.S., Are meteotsunamis an underrated hazard? Phil. Trans. R. Soc. A, 2015, vol. 373, p. 20140377. https://doi.org/10.1098/rsta.2014.0377

    Article  ADS  Google Scholar 

  55. Rabinovich, A.B. and Shepic, J., Meteorological tsunami: What is that? Priroda, 2016, no. 1, pp. 12–26.

  56. Sepic, J., Vilibis, I., Rabinovich, A.B., and Monserrat, S., Widespread tsunami-like waves of 23–27 June in the Mediterranean and Black Seas generated by high-altitude atmospheric forcing, Sci. Rep. (UK), 2015, vol. 5, p. 11682. https://doi.org/10.1038/srep11682

    Article  ADS  Google Scholar 

  57. Metin, A.D., Pelinovsky, E., Yalciner, A.C., Zaytsev, A., Ozyurt Tarakcioglu, G., Yalciner, B., and Kurkin, A., in Proceedings of the 13th International Conference on the Mediterranean Coastal Environment MEDCOAST 17, Mellieha, Malta, October 31–November 4, 2017, vol. 2, pp. 1143–1154.

  58. Antsyferov, S.M. and Kos’yan, R.D., Vzveshennye nanosy v verkhnei chasti shel’fa (Suspended Sediment at the Upper Shelf), Moscow: Nauka, 1986.

  59. Nanayakkara, K.I.U. and Dias, W.P.S., Fragility curves for structures under tsunami loading, Nat. Hazards, 2016, vol. 80, pp. 471–486. https://doi.org/10.1007/s11069-015-1978-1

    Article  Google Scholar 

  60. Ozer Sozdinler, C., Yalciner, A.S., and Zaytsev, A., Investigation of tsunami hydrodynamic parameters in inundation zones with different structural layouts, Pure Appl. Geophys., 2015, vol. 172, pp. 931–952. https://doi.org/10.1007/s00024-014-0947-z

    Article  ADS  Google Scholar 

  61. Ozer Sozdinler, C., Yalciner, A.C., Zaytsev, A., Suppasri, A., and Imamura, F., Investigation of hydrodynamic parameters and the effects of breakwaters during the 2011 Great East Japan Tsunami in Kamaishi Bay, Pure Appl. Geophys., 2015, vol. 172, pp. 3473–3491. https://doi.org/10.1007/s00024-015-1051-8

    Article  ADS  Google Scholar 

  62. Zaitsev, A.I., Kurkin, A.A., Pelinovsky, E.N., Yalciner, A., and Kian, R., Investigation of the influence of the Z-shape of the bay on sedimentation of bottom sediments under the impact of waves, Fundam. Prikl. Gidrofiz., 2017, vol. 10, no. 3, pp. 73–77. https://doi.org/10.7868/S2073667317030066

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This paper was written based on the plenary lecture delivered by one of the authors (E.N. Pelinovskiy) at the 21st Winter School on Continuum Mechanics (Perm, February 2019). The reporter thanks the organizers of the School for the fruitful atmosphere for discussions and exchange of ideas.

Funding

This study was carried out within the framework of the basic component of the state contract in scientific activity (task nos. 5.4568.2017/6.7 and 5.5176.2017/8.9) and supported by the Presidential Grant Council of the Russian Federation for Leading Scientific Schools (grant NSh-2685.2018.5) and Russian Foundation for Basic Research (project nos. 17‑05-00067 and 18-05-80019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. I. Zaytsev, A. A. Kurkin, E. N. Pelinovsky or A. Yalçıner.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaytsev, A.I., Kurkin, A.A., Pelinovsky, E.N. et al. The Use of the NAMI-DANCE Computational Complex on the Problem of Tsunami Waves. J Appl Mech Tech Phy 61, 1140–1152 (2020). https://doi.org/10.1134/S0021894420070214

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894420070214

Keywords:

Navigation