Skip to main content
Log in

On p-parabolicity of Riemannian manifolds and graphs

  • Published:
Revista Matemática Complutense Aims and scope Submit manuscript

Abstract

Kanai proved that quasi-isometries between Riemannian manifolds with bounded geometry preserve many global properties, including the existence of Green’s function, i.e., non-parabolicity. However, Kanai’s hypotheses are too restrictive. Herein we prove the stability of p-parabolicity (with \(1<p<\infty \)) by quasi-isometries between Riemannian manifolds under weaker assumptions. Also, we obtain some results on the p-parabolicity of graphs and trees; in particular, we characterize p-parabolicity for a large class of trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alvarez, V., Rodríguez, J.M., Yakubovich, V.A.: Subadditivity of p-harmonic “measure” on graphs. Michigan Math. J. 49, 47–64 (2001)

  2. Cantón, A., Fernández, J.L., Pestana, D., Rodríguez, J.M.: On harmonic functions on trees. Potential Anal. 15, 199–244 (2001)

    Article  MathSciNet  Google Scholar 

  3. Cantón, A., Granados, A., Portilla, A., Rodríguez, J.M.: Quasi-isometries and isoperimetric inequalities in planar domains. J. Math. Soc. Jpn. 67, 127–157 (2015)

    Article  MathSciNet  Google Scholar 

  4. Cheng, S.Y., Yau, S.-T.: Differential equations on Riemannian manifolds and their geometric applications. Commun. Pure Appl. Math. 28, 333–354 (1975)

    Article  MathSciNet  Google Scholar 

  5. Coulhon, T., Saloff-Coste, L.: Variétés Riemanniennes isométriques à l’infini. Rev. Mat. Iberoamericana 11, 687–726 (1995)

    Article  MathSciNet  Google Scholar 

  6. Delmotte, T.: Parabolic Harnack inequality and estimates of Markov chains on graphs. Rev. Mat. Iberoamericana 15, 181–232 (1999)

    Article  MathSciNet  Google Scholar 

  7. Doyle, P.G., Snell, J.L.: Random Walks and Electric Networks. The Carus Mathematical Monographs The Carus Mathematical Monographs The Carus Mathematical Monographs The Carus Mathematical Monographs The Carus Mathematical Monographs, vol. 22. The Mathematical Association of America, Washington DC (1984)

    Book  Google Scholar 

  8. Fernández, J.L.: On the existence of Green’s function in Riemannian manifolds. Proc. Am. Math. Soc. 96, 284–286 (1986)

    MathSciNet  MATH  Google Scholar 

  9. Fernández, J.L., Rodríguez, J.M.: The exponent of convergence of Riemann surfaces. Bass Riemann surfaces. Annales Acad. Scient. Fenn. A. I. I(15), 165–183 (1990)

    MathSciNet  MATH  Google Scholar 

  10. Fernández, J.L., Rodríguez, J.M.: Area growth and Green’s function of Riemann surfaces. Arkiv för Matematik 30, 83–92 (1992)

    Article  MathSciNet  Google Scholar 

  11. Granados, A., Pestana, D., Portilla, A., Rodríguez, J.M.: Stability of \(p\)-parabolicity under quasi-isometries. Math. Nachr. In press

  12. Granados, A., Pestana, D., Portilla, A., Rodríguez, J.M., Tourís, E.: Stability of the injectivity radius under quasi-isometries and applications to isoperimetric inequalities. RACSAM Rev. Real Acad. Ciencias Exactas, Físicas y Naturales. Serie A. Matem. 112, 1225–1247 (2018)

  13. Granados, A., Pestana, D., Portilla, A., Rodríguez, J.M., Tourís, E.: Stability of the volume growth rate under quasi-isometries. Rev. Matem. Complut. 33(1), 231–270 (2020)

    Article  MathSciNet  Google Scholar 

  14. Gromov, M.: Hyperbolic groups. In: Gersten, S.M. (ed.) Essays in Group Theory, pp. 75–263. M. S. R. I. Publ. 8. Springer (1987)

  15. Ghys, E., de la Harpe, P.: Sur les Groupes Hyperboliques d’après Mikhael Gromov. Progress in Mathematics, Volume 83. Birkhäuser (1990)

  16. Holopainen, I.: Nonlinear potential theory and quasiregular mappings on Riemannian manifolds. Ann. Acad. Sci. Fenn. 74, 1–45 (1990)

    MATH  Google Scholar 

  17. Holopainen, I.: Rough isometries and \(p\)-harmonic functions with finite Dirichlet integral. Rev. Mat. Iberoam. 10, 143–176 (1994)

    Article  MathSciNet  Google Scholar 

  18. Holopainen, I., Soardi, P.M.: \(p\)-harmonic functions on graphs and manifolds. Manuscr. Math. 94, 95–110 (1997)

    Article  MathSciNet  Google Scholar 

  19. Hughes, B.: Trees and ultrametric spaces: a categorical equivalence. Adv. Math. 189, 148–191 (2004)

    Article  MathSciNet  Google Scholar 

  20. Hytönen, T.: A framework for non-homogeneous analysis on metric spaces, and the RBMO space of Tolsa. Publ. Mat. 54, 485–504 (2010)

    Article  MathSciNet  Google Scholar 

  21. Kanai, M.: Rough isometries and combinatorial approximations of geometries of non-compact Riemannian manifolds. J. Math. Soc. Jpn. 37, 391–413 (1985)

    Article  Google Scholar 

  22. Kanai, M.: Rough isometries and the parabolicity of Riemannian manifolds. J. Math. Soc. Jpn. 38, 227–238 (1986)

    Article  MathSciNet  Google Scholar 

  23. Kanai, M.: Analytic inequalities and rough isometries between non-compact Riemannian manifolds. Curvature and Topology of Riemannian manifolds (Katata, 1985). Lecture Notes in Math. 1201. Springer, pp. 122–137 (1986)

  24. Malgrange, M.: Existence et approximation des solutions des équations aux derivées partielles et des équations de convolution. Ann. Inst. Fourier 6, 271–355 (1955)

    Article  Google Scholar 

  25. Martínez-Pérez, A., Morón, M.A.: Uniformly continuous maps between ends of \({\mathbb{R}}\)-trees. Math. Z. 263(3), 583–606 (2009)

    Article  MathSciNet  Google Scholar 

  26. Martínez-Pérez, A., Rodríguez, J.M.: Cheeger isoperimetric constant of Gromov hyperbolic manifolds and graphs. Commun. Contemp. Math. 20:5, 1750050 (2018) (33 pages)

  27. Martínez-Pérez, A., Rodríguez, J.M.: Isoperimetric inequalities in Riemann surfaces and graphs. J. Geom. Anal. In press

  28. Portilla, A., Rodríguez, J.M., Tourís, E.: Gromov hyperbolicity through decomposition of metric spaces II. J. Geom. Anal. 14, 123–149 (2004)

    Article  MathSciNet  Google Scholar 

  29. Portilla, A., Tourís, E.: A characterization of Gromov hyperbolicity of surfaces with variable negative curvature. Publ. Mat. 53, 83–110 (2009)

    Article  MathSciNet  Google Scholar 

  30. Rodríguez, J.M.: Isoperimetric inequalities and Dirichlet functions of Riemann surfaces. Publ. Mat. 38, 243–253 (1994)

    Article  MathSciNet  Google Scholar 

  31. Rodríguez, J.M.: Two remarks on Riemann surfaces. Publ. Mat. 38, 463–477 (1994)

    Article  MathSciNet  Google Scholar 

  32. Sario, L., Nakai, M., Wang, C., Chung, L.O.: Classification Theory of Riemannian Manifolds. Lecture Notes in Mathematics, Vol. 605. Springer-Verlag, Berlin (1977)

  33. Soardi, P.M.: Potential Theory in Infinite Networks. Lecture Notes in Math., Volume 1590, Springer-Verlag (1994)

  34. Tourís, E.: Graphs and Gromov hyperbolicity of non-constant negatively curved surfaces. J. Math. Anal. Appl. 380, 865–881 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Funding was provided by Ministerio de Economía y Competitividad (ES) (Grant No. PGC2018-098321-B-I00) and Agencia Estatal de Investigación (ES) (Grant No. PID2019-106433GB-I00 / AEI / 10.13039/501100011033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Álvaro Martínez-Pérez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Álvaro Martínez-Pérez supported in part by a Grant from Ministerio de Ciencia, Innovación y Universidades (PGC2018-098321-B-I00), Spain. Second author supported by a Grant from Agencia Estatal de Investigación (PID2019-106433GB-I00 / AEI / 10.13039/501100011033), Spain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Pérez, Á., Rodríguez, J.M. On p-parabolicity of Riemannian manifolds and graphs. Rev Mat Complut 35, 179–198 (2022). https://doi.org/10.1007/s13163-021-00387-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13163-021-00387-x

Keywords

Mathematics Subject Classification

Navigation