Skip to main content
Log in

Electric Field Distribution of an Optical Nanocavity Embedded with a Single Molecule

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Using state-of-the-art quantum mechanical calculations, we investigate the spatial profile of the electric field enhancements induced within an optical cavity embedded with a variety of organic molecules. We observed marked differences in the spectral positions, spectral intensities, maximum achievable electric field, and spatial profile of the electric field with a remarkable sensitivity to the embedded molecular type. In a broader perspective, our quantum mechanical calculations provide quantitative access to the molecule-dependent electric field distributions and unveil intricate and rich optical features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data and materials generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

The computational codes employed in the current study are available from the corresponding author on reasonable request.

References

  1. Koenderink AF, Alù A, Polman A (2015) Nanophotonics: Shrinking light-based technology. Science 348 (6234):516–521 https://science.sciencemag.org/content/348/6234/516

  2. Maier SA, Kik PG, Atwater HA, Meltzer S, Harel E, Koel BE, Requicha AAG (2003) Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat Mater 2(4):229–232. https://doi.org/10.1038/nmat852

    Article  CAS  PubMed  Google Scholar 

  3. Moerner WE, Kador L (1989) Optical detection and spectroscopy of single molecules in a solid. Phys Rev Lett 62:2535–2538 https://link.aps.org/doi/10.1103/PhysRevLett.62.2535

  4. Koenderink AF (2017) Single-photon nanoantennas. ACS Photonics 4(4):710–722 pMID:29354664

  5. Morgan BL, Mandel L (1966) Measurement of photon bunching in a thermal light beam. Phys Rev Lett 16:1012–1015 https://link.aps.org/doi/10.1103/PhysRevLett.16.1012

  6. Basché T, Moerner WE, Orrit M, Talon H (1992) Photon antibunching in the fluorescence of a single dye molecule trapped in a solid. Phys Rev Lett 69:1516–1519 https://link.aps.org/doi/10.1103/PhysRevLett.69.1516

  7. Purcell EM, Torrey HC, Pound RV (1946) Resonance absorption by nuclear magnetic moments in a solid. Phys Rev 69:37–38 https://link.aps.org/doi/10.1103/PhysRev.69.37

  8. Kongsuwan N, Demetriadou A, Chikkaraddy R, Benz F, Turek VA, Keyser UF, Baumberg JJ, Hess O (2018) Suppressed quenching and strong-coupling of purcell-enhanced singlemoleculeemission in plasmonic nanocavities. ACS Photonics 5(1):186–191

    Article  CAS  Google Scholar 

  9. Itoh T, Yamamoto YS, Ozaki Y (2017) Plasmon-enhanced spectroscopy of absorption and spontaneous emissions explained using cavity quantum optics. Chem. Soc. Rev. 46:3904–3921. https://doi.org/10.1039/C7CS00155J

    Article  CAS  PubMed  Google Scholar 

  10. Aroca RF (2013) Plasmon enhanced spectroscopy. Phys Chem Chem Phys 15:5355–5363. https://doi.org/10.1039/C3CP44103B

    Article  CAS  PubMed  Google Scholar 

  11. Imada H, Miwa K, Imai-Imada M, Kawahara S, Kimura K, Kim Y (2017) Single-molecule investigation of energy dynamics in a coupled plasmon-exciton system. Phys Rev Lett 119:013901 https://link.aps.org/doi/10.1103/PhysRevLett.119.013901

  12. Benz F, Schmidt MK, Dreismann A, Chikkaraddy R, Zhang Y, Demetriadou A, Carnegie C, Ohadi H, de Nijs B, Esteban R, Aizpurua J, Baumberg JJ (2016) Single-molecule optomechanics in picocavities”. Science 354(6313):726–729 https://science.sciencemag.org/content/354/6313/726

  13. Bahsoun H, Chervy T, Thomas A, Borjesson K, Hertzog M, George J, Devaux E, Genet C, Hutchison JA, Ebbesen TW (2018) Electronic light–matter strong coupling in nanofluidicfabry–perot cavities. ACS Photonics 5(1):225–232

    Article  CAS  Google Scholar 

  14. Zhang R, Zhang Y, Dong ZC, Jiang S, Zhang C, Chen LG, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang JL, Hou JG (2013) Chemical mapping of a single molecule by plasmon-enhanced raman scattering. Nature 498(7452):82–86. https://doi.org/10.1038/nature12151

    Article  CAS  PubMed  Google Scholar 

  15. Zhu W, Crozier KB (2014) Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced raman scattering. Nat Commun 5(1):5228. https://doi.org/10.1038/ncomms6228

    Article  CAS  PubMed  Google Scholar 

  16. Galego J, Garcia-Vidal FJ, Feist J (2015) Cavity-induced modifications of molecular structure in the strong-coupling regime. Phys Rev X 5:041022 https://link.aps.org/doi/10.1103/PhysRevX.5.041022

  17. Herrera F, Spano FC (2016) Cavity-controlled chemistry in molecular ensembles. Phys Rev Lett 116:238301 https://link.aps.org/doi/10.1103/PhysRevLett.116.238301

  18. Deng H, Weihs G, Santori C, Bloch J, Yamamoto Y (2002) Condensation of semiconductor microcavity exciton polaritons. Science 298(5591):199–202 https://science.sciencemag.org/content/298/5591/199

  19. Balili R, Hartwell V, Snoke D, Pfeiffer L, West K (2007) Bose-einstein condensation of microcavity polaritons in a trap. Science 316(5827):1007–1010 https://science.sciencemag.org/content/316/5827/1007

  20. Coles DM, Somaschi N, Michetti P, Clark C, Lagoudakis PG, Savvidis PG, Lidzey DG (2014) Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity. Nat Mater 13(7):712–719. https://doi.org/10.1038/nmat3950

    Article  CAS  Google Scholar 

  21. Zhong X, Chervy T, Zhang L, Thomas A, George J, Genet C, Hutchison JA, Ebbesen TW (2017) Energy transfer between spatially separated entangled molecules. Angew Chem Int Ed 56(31):9034–9038

    Article  CAS  Google Scholar 

  22. Marques M, Gross E (2004) Time-dependent density functional theory. Annu Rev Phys Chem 55(1):427–455. pMID: 15117259

  23. Stratmann RE, Scuseria GE, Frisch MJ (1998) An efficient implementation of time-dependentdensity-functional theory for the calculation of excitation energies of large molecules. J Chem Phys 109(19):8218–8224

    Article  CAS  Google Scholar 

  24. Runge E, Gross EKU (1984) Density-functional theory for time-dependent systems. Phys Rev Lett 52:997–1000 https://link.aps.org/doi/10.1103/PhysRevLett.52.997

  25. Calais JL (1993) Density-functional theory of atoms and molecules. r.g. parr and w. yang, oxforduniversity press, new york, oxford, 1989. ix + 333 pp. price 45.00. Int J Quantum Chem 47(1):101–101

  26. Yu R, Cox JD, Saavedra JRM, Garcia de Abajo FJ (2017) Analytical modeling of grapheneplasmons. ACS Photonics 4(12):3106–3114

    Article  CAS  Google Scholar 

  27. de Vega S, Garcia de Abajo FJ (2017) Plasmon generation through electron tunneling in graphene. ACS Photonics 4(9):2367–2375

    Article  Google Scholar 

  28. Fei Z, Rodin AS, Andreev GO, Bao W, McLeod AS, Wagner M, Zhang LM, Zhao Z, Thiemens M, Dominguez G, Fogler MM, Neto AHC, Lau CN, Keilmann F, Basov DN (2012) Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487(7405):82–85. https://doi.org/10.1038/nature11253

    Article  CAS  PubMed  Google Scholar 

  29. Brar VW, Jang MS, Sherrott M, Lopez JJ, Atwater HA (2013) Highly confined tunablemid-infrared plasmonics in graphene nanoresonators. Nano Letters 13(6):2541–2547. pMID: 23621616

  30. Yan H, Li Z, Li X, Zhu W, Avouris P, Xia F (2012) Infrared spectroscopy of tunable diracterahertz magneto-plasmons in graphene, Nano Letters 12 (7) 3766–3771, pMID:22690695

  31. Garcia de Abajo FJ, (2014) Graphene plasmonics: Challenges and opportunities, ACS Photonics1 (3) 135–152

  32. Ni GX, Wang L, Goldflam MD, Wagner M, Fei Z, McLeod AS, Liu MK, Keilmann F, Özyilmaz B, Castro Neto AH, Hone J, Fogler MM, Basov DN (2016) Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene, Nat Photonics 10 (4) 244–247 https://doi.org/10.1038/nphoton.2016.45

  33. Ilic O, Jablan M, Joannopoulos JD, Celanovic I, Buljan H, Soljačić M, (2012) Near-field thermal radiation transfer controlled by plasmons in graphene, Phys. Rev. B 85 155422 https://link.aps.org/doi/10.1103/PhysRevB.85.155422

  34. Yu R, Garcia de Abajo FJ, (2016) Electrical detection of single graphene plasmons, ACS Nano10 (8) 8045–8053, pMID: 27472914

  35. Yu R, Cox JD, de Abajo FJG (2016) Nonlinear plasmonic sensing with nanographene, Phys. Rev. Lett. 117 123904 https://link.aps.org/doi/10.1103/PhysRevLett.117.123904

  36. Fang Z, Thongrattanasiri S, Schlather A, Liu Z, Ma L, Wang Y, Ajayan PM, Nordlander P, Halas NJ, Garcia de Abajo FJ (2013) Gated tunability and hybridization of localizedplasmons in nanostructured graphene, ACS Nano 7 (3) 2388–2395, pMID: 23390960

  37. Ann DTJGDER, nanoph, (2017) Vol. 6, Ch. Plasmonic circuits for manipulating optical information, p. 543, 3 https://www.degruyter.com/view/j/nanoph.2017.6.issue-3/nanoph-2016-0131/nanoph-2016-0131.xml

  38. Cox JD, García de Abajo FJ (2018) Nonlinear atom-plasmon interactions enabled by nanostructured graphene, Phys. Rev. Lett. 121 257403 https://link.aps.org/doi/10.1103/PhysRevLett.121.257403

  39. Fang Z, Wang Y, Schlather AE, Liu Z, Ajayan PM, Garcia de Abajo FJ, Nordlander P, Zhu X, Halas NJ (2014) Active tunable absorption enhancement with graphene nanodisk arrays,Nano Letters 14 (1) 299–304, pMID: 24320874

  40. Jin R, Cao Y, Mirkin CA, Kelly KL, Schatz GC, Zheng JG (2001) Photoinduced conversion of silver nanospheres to nanoprisms, Science 294 (5548) 1901–1903 https://science.sciencemag.org/content/294/5548/1901

  41. Averitt RD., Sarkar D, Halas NJ (1997) Plasmon resonance shifts of au-coated \({\rm au}_{2}s\) nanoshells: Insight into multicomponent nanoparticle growth, Phys. Rev. Lett. 78 4217–4220 , https://link.aps.org/doi/10.1103/PhysRevLett.78.4217

  42. Myroshnychenko V, Rodriguez-Fernandez J, Pastoriza-Santos I, Funston AM, Novo C, Mulvaney P, Liz-Marzan LM, Garcia de Abajo FJ (2008) Modelling the optical response of gold nanoparticles. Chem. Soc. Rev. 37:1792–1805. https://doi.org/10.1039/B711486A

    Article  CAS  PubMed  Google Scholar 

  43. Aizpurua J, Hanarp P, Sutherland DS, Käll M, Bryant GW, García de Abajo FJ (2003) Optical properties of gold nanorings, Phys. Rev. Lett. 90 057401 https://link.aps.org/doi/10.1103/PhysRevLett.90.057401

  44. Hao F, Nehl CL, Hafner JH, Nordlander P (2007) Plasmon resonances of a gold nanostar, NanoLetters 7 (3) 729–732, pMID: 17279802

  45. Hentschel M, Utikal T, Giessen H, Lippitz M (2012) Quantitative modeling of the third harmonicemission spectrum of plasmonic nanoantennas, Nano Letters 12 (7) 3778–3782,pMID: 22686215

  46. Chikkaraddy R, Zheng X, Benz F, Brooks LJ, de Nijs B, Carnegie C, Kleemann M-E, Mertens J, Bowman RW, Vandenbosch GAE, Moshchalkov VV, Baumberg JJ (2017) Howultranarrow gap symmetries control plasmonic nanocavity modes: From cubes to spheres inthe nanoparticle-on-mirror. ACS Photonics 4(3):469–475

    Article  CAS  Google Scholar 

  47. Chikkaraddy R, Turek VA, Kongsuwan N, Benz F, Carnegie C, van de Goor T, de Nijs B, Demetriadou A, Hess O, Keyser UF, Baumberg JJ (2018) Mapping nanoscale hotspots withsingle-molecule emitters assembled into plasmonic nanocavities using dna origami, NanoLetters 18 (1) 405–411, pMID: 29166033

  48. Steuwe C, Erdelyi M, Szekeres G, Csete M, Baumberg JJ, Mahajan S, Kaminski CF (2015) Visualizing electromagnetic fields at the nanoscale by single molecule localization, NanoLetters 15 (5) 3217–3223, pMID: 25915093

  49. Zuloaga J, Prodan E, Nordlander P (2009) Quantum description of the plasmon resonances of ananoparticle dimer, Nano Letters 9 (2) 887–891, pMID: 19159319

  50. Tan SF, Wu L, Yang JK, Bai P, Bosman M, Nijhuis CA (2014) Quantum plasmon resonances controlled by molecular tunnel junctions, Science 343 (6178) 1496–1499 https://science.sciencemag.org/content/343/6178/1496

  51. Esteban R, Aizpurua J, Bryant GW (2014) Strong coupling of single emitters interacting with phononic infrared antennae, New Journal of Physics 16 (1) 013052 https://doi.org/10.1088%2F1367-2630%2F16%2F1%2F013052

  52. Zhang Y, Dong Z-C, Aizpurua J (2020) Influence of the chemical structure on molecular lightemission in strongly localized plasmonic fields. J Phys Chem C 124(8):4674–4683

    Article  CAS  Google Scholar 

  53. Mortensen JJ, Hansen LB, Jacobsen KW (2005) Real-space grid implementation of the projector augmented wave method, Phys. Rev. B 71 035109 https://link.aps.org/doi/10.1103/PhysRevB.71.035109

  54. Walter M, Hakkinen H, Lehtovaara L, Puska M, Enkovaara J, Rostgaard C, Mortensen JJ (2008) Time-dependent density-functional theory in the projector augmented-wavemethod. J Chem Phys 128(24):244101

    Article  Google Scholar 

  55. Larsen AH, Mortensen JJ, Blomqvist J, Castelli IE, Christensen R, Dulak M, Friis J, Groves MN, Hammer B, Hargus C, Hermes ED, Jennings PC, Jensen PB, Kermode J, Kitchin JR, Kolsbjerg EL, Kubal J, Kaasbjerg K, Lysgaard S, Maronsson JB, Maxson T, Olsen T, Pastewka L, Peterson A, Rostgaard C, Schiotz J, Schutt O, Strange M, Thygesen KS, Vegge T, Vilhelmsen L, Walter M, Zeng Z, Jacobsen KW (2017) The atomic simulation environment-a python library for working with atoms, Journal of Physics: Condens Matter 29 (27) 273002 http://stacks.iop.org/0953-8984/29/i=27/a=273002

  56. Kohn W, Sham LJ, (1965) Self-consistent equations including exchange and correlation effects, Phys. Rev. 140 A1133–A1138 https://link.aps.org/doi/10.1103/PhysRev.140.A1133

  57. Perdew JP, Zunger A, (1981) Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B 23 5048–5079 https://link.aps.org/doi/10.1103/PhysRevB.23.5048

  58. Casida ME, Jamorski C, Casida KC, Salahub DR (1998) Molecular excitation energies tohigh-lying bound states from time-dependent density-functional response theory: Characterizationand correction of the time-dependent local density approximation ionization threshold. J Chem Phys 108(11):4439–4449

    Article  CAS  Google Scholar 

  59. Rossi TP, Zugarramurdi A, Puska MJ, Nieminen RM (2015) Quantized evolution of the plasmonic response in a stretched nanorod, Phys. Rev. Lett. 115 236804 https://link.aps.org/doi/10.1103/PhysRevLett.115.236804

  60. Rossi TP, Kuisma M, Puska MJ, Nieminen RM, Erhart P (2017) Kohn-sham decomposition in real-time time-dependent density-functional theory: An efficient tool for analyzing plasmonic excitations, J Chem Theory Comput 13 (10) 4779-4790, pMID: 28862851

Download references

Funding

The research reported in this publication was supported by funding from Kuwait College of Science And Technology (KCST).

Author information

Authors and Affiliations

Authors

Contributions

J. H. Mokkath contributed to conceptualization, data curation, formal analysis, writing—original draft, funding acquisition, project administration, resources, software, supervision, validation, writing—review, and editing.

Corresponding author

Correspondence to Junais Habeeb Mokkath.

Ethics declarations

Ethical approval

This material is the authors’ own original work, which has not been previously published elsewhere.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokkath, J.H. Electric Field Distribution of an Optical Nanocavity Embedded with a Single Molecule. Plasmonics 16, 1515–1524 (2021). https://doi.org/10.1007/s11468-021-01398-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01398-6

Keywords

Navigation