Skip to main content
Log in

A Novel Regularization Based on the Error Function for Sparse Recovery

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Regularization plays an important role in solving ill-posed problems by adding extra information about the desired solution, such as sparsity. Many regularization terms usually involve some vector norms. This paper proposes a novel regularization framework that uses the error function to approximate the unit step function. It can be considered as a surrogate function for the \(L_0\) norm. The asymptotic behavior of the error function with respect to its intrinsic parameter indicates that the proposed regularization can approximate the standard \(L_0\), \(L_1\) norms as the parameter approaches to 0 and \(\infty ,\) respectively. Statistically, it is also less biased than the \(L_1\) approach. Incorporating the error function, we consider both constrained and unconstrained formulations to reconstruct a sparse signal from an under-determined linear system. Computationally, both problems can be solved via an iterative reweighted \(L_1\) (IRL1) algorithm with guaranteed convergence. A large number of experimental results demonstrate that the proposed approach outperforms the state-of-the-art methods in various sparse recovery scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Note that \(\Vert \cdot \Vert _0\) is a pseudo-norm, but is often called as the \(L_0\) norm.

References

  1. Adcock, B., Bao, A., Brugiapaglia, S.: Correcting for unknown errors in sparse high-dimensional function approximation. Numer. Math. 142(3), 667–711 (2019)

    Article  MathSciNet  Google Scholar 

  2. Arlot, S., Celisse, A., et al.: A survey of cross-validation procedures for model selection. Stat. Surv. 4, 40–79 (2010)

    Article  MathSciNet  Google Scholar 

  3. Bai, Y., Cheung, G., Liu, X., Gao, W.: Graph-based blind image deblurring from a single photograph. IEEE Trans. Image Process. 28(3), 1404–1418 (2018)

    Article  MathSciNet  Google Scholar 

  4. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    Article  Google Scholar 

  5. Candès, E.J., Fernandez-Granda, C.: Towards a mathematical theory of super-resolution. Commun. Pure Appl. Math. 67(6), 906–956 (2014)

    Article  MathSciNet  Google Scholar 

  6. Candès, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)

    Article  MathSciNet  Google Scholar 

  7. Candès, E.J., Wakin, M.B., Boyd, S.P.: Enhancing sparsity by reweighted l1 minimization. J. Fourier Anal. Appl. 14(5–6), 877–905 (2008)

    Article  MathSciNet  Google Scholar 

  8. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    Article  MathSciNet  Google Scholar 

  9. Chartrand, R.: Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Process Lett. 14(10), 707–710 (2007)

    Article  Google Scholar 

  10. Chu, J.T.: On bounds for the normal integral. Biometrika 42(1/2), 263–265 (1955)

    Article  MathSciNet  Google Scholar 

  11. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  12. Donoho, D.L., Huo, X.: Uncertainty principles and ideal atomic decomposition. IEEE Trans. Inf. Theory 47(7), 2845–2862 (2001)

    Article  MathSciNet  Google Scholar 

  13. Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96(456), 1348–1360 (2001)

    Article  MathSciNet  Google Scholar 

  14. Fannjiang, A., Liao, W.: Coherence pattern-guided compressive sensing with unresolved grids. SIAM J. Imag. Sci. 5(1), 179–202 (2012)

    Article  MathSciNet  Google Scholar 

  15. Foucart, S., Rauhut, H.: A Mathematical Introduction to Compressive Sensing. Birkhäuser, New York (2013)

    Book  Google Scholar 

  16. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2(1), 17–40 (1976)

    Article  Google Scholar 

  17. Glowinski, R., Marroco, A.: Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problèmes de dirichlet non linéaires. ESAIM Math. Model. Numer. Anal.-Modélisation Mathématique et Analyse Numérique 9(R2), 41–76 (1975)

  18. Goodman, J.W.: Introduction to Fourier Optics. Roberts and Company Publishers, Greenwood Village (2005)

    Google Scholar 

  19. Lange, K., Hunter, D., Yang, I.: Optimization transfer using surrogate objective functions. J. Comput. Graph. Stat. 9(1), 1–20 (2000)

    MathSciNet  Google Scholar 

  20. Lou, Y., Yin, P., He, Q., Xin, J.: Computing sparse representation in a highly coherent dictionary based on difference of \( {L_1}\) and \( {L_2}\). J. Sci. Comput. 64(1), 178–196 (2015)

    Article  MathSciNet  Google Scholar 

  21. Lou, Y., Yin, P., Xin, J.: Point source super-resolution via non-convex l1 based methods. J. Sci. Comput. 68, 1082–1100 (2016)

    Article  MathSciNet  Google Scholar 

  22. Lv, J., Fan, Y., et al.: A unified approach to model selection and sparse recovery using regularized least squares. Ann. Stat. 37(6A), 3498–3528 (2009)

    Article  MathSciNet  Google Scholar 

  23. Mammone, R.J.: Spectral extrapolation of constrained signals. J. Opt. Soc. Am. 73(11), 1476–1480 (1983)

    Article  Google Scholar 

  24. Natarajan, B.K.: Sparse approximate solutions to linear systems. SIAM J. Comput. 24(2), 227–234 (1995)

    Article  MathSciNet  Google Scholar 

  25. Ochs, P., Dosovitskiy, A., Brox, T., Pock, T.: On iteratively reweighted algorithms for nonsmooth nonconvex optimization in computer vision. SIAM J. Imaging Sci. 8(1), 331–372 (2015)

    Article  MathSciNet  Google Scholar 

  26. Papoulis, A., Chamzas, C.: Improvement of range resolution by spectral extrapolation. Ultra. Imag. 1(2), 121–135 (1979)

    Article  Google Scholar 

  27. Parikh, N., Boyd, S., et al.: Proximal algorithms. Found. Trends Optim. 1(3), 127–239 (2014)

    Article  Google Scholar 

  28. Qin, J., Lou, Y.: \(l_{1-2}\) regularized logistic regression. In: 2019 53rd Asilomar Conference on Signals, Systems, and Computers, pp. 779–783. IEEE (2019)

  29. Rahimi, Y., Wang, C., Dong, H., Lou, Y.: A scale invariant approach for sparse signal recovery. SIAM J. Sci. Comput. 41(6), A3649–A3672 (2019)

    Article  MathSciNet  Google Scholar 

  30. Santosa, F., Symes, W.W.: Linear inversion of band-limited reflection seismograms. SIAM J. Sci. Stat. Comp. 7(4), 1307–1330 (1986)

    Article  MathSciNet  Google Scholar 

  31. Shen, X., Pan, W., Zhu, Y.: Likelihood-based selection and sharp parameter estimation. J. Am. Stat. Assoc. 107(497), 223–232 (2012)

    Article  MathSciNet  Google Scholar 

  32. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  33. Tillmann, A.M., Pfetsch, M.E.: The computational complexity of the restricted isometry property, the nullspace property, and related concepts in compressed sensing. IEEE Trans. Inf. Theory 60(2), 1248–1259 (2013)

    Article  MathSciNet  Google Scholar 

  34. Tran, H., Webster, C.: A class of null space conditions for sparse recovery via nonconvex, non-separable minimizations. Results Appl. Math. 3, 100011 (2019)

    Article  Google Scholar 

  35. Wang, C., Yan, M., Rahimi, Y., Lou, Y.: Accelerated schemes for the \(l_1/l_2\) minimization. IEEE Trans. Signal Process. 68, 2660–2669 (2020)

    Article  MathSciNet  Google Scholar 

  36. Xu, Z., Chang, X., Xu, F., Zhang, H.: \(l_{1/2}\) regularization: A thresholding representation theory and a fast solver. IEEE Trans. Neural Netw. Learn. Syst. 23, 1013–1027 (2012)

    Article  Google Scholar 

  37. Xu, Z., H., G., Yao, W., Zhang, H.: Representative of \(l_{1/2}\) regularization among \(l_q~(0<q<1)\) regularizations: an experimental study based on phase diagram. Acta Automatica Sinica 38(7), 1225–1228 (2012)

  38. Yan, M.: A new primal-dual algorithm for minimizing the sum of three functions with a linear operator. J. Sci. Comput. 76(3), 1698–1717 (2018)

    Article  MathSciNet  Google Scholar 

  39. Yin, P., Esser, E., Xin, J.: Ratio and difference of \(l_1\) and \(l_2\) norms and sparse representation with coherent dictionaries. Commun. Inf. Syst. 14(2), 87–109 (2014)

    MathSciNet  MATH  Google Scholar 

  40. Yin, P., Lou, Y., He, Q., Xin, J.: Minimization of \(\ell _{1-2}\) for compressed sensing. SIAM J. Sci. Comput. 37(1), A536–A563 (2015)

    Article  MathSciNet  Google Scholar 

  41. Zhang, C.: Nearly unbiased variable selection under minimax concave penalty. Ann. Stat. pp. 894–942 (2010)

  42. Zhang, S., Xin, J.: Minimization of transformed \({L_1}\) penalty: Closed form representation and iterative thresholding algorithms. Commun. Math. Sci. 15, 511–537 (2017)

    Article  MathSciNet  Google Scholar 

  43. Zhang, S., Xin, J.: Minimization of transformed \({L_1}\) penalty: theory, difference of convex function algorithm, and robust application in compressed sensing. Math. Program. 169(1), 307–336 (2018)

    Article  MathSciNet  Google Scholar 

  44. Zhang, T.: Multi-stage convex relaxation for learning with sparse regularization. In: Adv. Neural Inf. Proces. Syst., pp. 1929–1936 (2009)

Download references

Acknowledgements

The authors would like to acknowledge Dr. Chao Wang for providing sparse recovery codes and the anonymous reviewers for their comments and suggestions. This research was initialized at the American Institute of Mathematics Structured Quartet Research Ensembles (SQuaREs), July 22–26, 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifei Lou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

WG was partially supported by NSF DMS-1521582. YL was partially supported by NSF CAREER 1846690. JQ was partially supported by NSF DMS-1941197. MY was partially supported by NSF DMS-2012439. The MATLAB codes of this manuscript will be available under https://sites.google.com/site/louyifei/Software after publication.

Appendix: Proofs of (P3)–(P4) in Section 3.1

Appendix: Proofs of (P3)–(P4) in Section 3.1

Proof

To show the concavity of \(J_\sigma =\sum _{j=1}^n\Phi _\sigma (|x_j|)\) on \(\mathbb {R}^n_+\), we have for \(x>0\) that

$$\begin{aligned} \frac{d^2}{dx^2}\Phi _\sigma (x)=-\frac{2x}{\sigma ^2}\exp \Big (-\frac{x^2}{\sigma ^2}\Big )<0, \end{aligned}$$

which implies that \(\Phi _\sigma (x)\) is concave on \([0,\infty )\). Consequently, for any \(t\in [0,1]\), \(\mathbf{x },\mathbf{y }\in \mathbb {R}^n_+\), we have

$$\begin{aligned} \Phi _\sigma \big (tx_j+(1-t)y_j\big )\ge t\Phi _\sigma (x_j)+(1-t)\Phi _\sigma (y_j), \qquad \text { for } j=1,\dots ,n. \end{aligned}$$

Therefore, (P3) holds, i.e.,

$$\begin{aligned} J_\sigma \big (t\mathbf{x }+(1-t)\mathbf{y }\big )= & {} \sum _{j=1}^n \Phi _\sigma \big (tx_j+(1-t)y_j\big )\\\ge & {} t \sum _{j=1}^n\Phi _\sigma (x_j)+(1-t)\sum _{j=1}^n \Phi _\sigma (y_j)\\= & {} tJ_\sigma (\mathbf{x }) + (1-t)J_\sigma (\mathbf{y }). \end{aligned}$$

As for (P4), we recall that

$$\begin{aligned} J_\sigma (\mathbf{x })=\sum _{j=1}^n\int _0^{|x_j|}e^{-\pi ^2/\sigma ^2}d\tau . \end{aligned}$$

Then for any \(\mathbf{x },\mathbf{y }\in \mathbb {R}^n\), we have

$$\begin{aligned} J_\sigma (\mathbf{x }+\mathbf{y })= & {} \sum _{j=1}^n\int _0^{|x_j+y_j|}e^{-\tau ^2/\sigma ^2}d\tau \\= & {} \sum _{j=1}^n\int _0^{|x_j|}e^{-\tau ^2/\sigma ^2}d\tau +\sum _{j=1}^n\int _{|x_j|}^{|x_j+y_j|}e^{-\tau ^2/\sigma ^2}d\tau \\\le & {} \sum _{j=1}^n\int _0^{|x_j|}e^{-\tau ^2/\sigma ^2}d\tau +\sum _{j=1}^n\int _{|x_j|}^{|x_j|+|y_j|}e^{-\tau ^2/\sigma ^2}d\tau \\\le & {} \sum _{j=1}^n\int _0^{|x_j|}e^{-\tau ^2/\sigma ^2}d\tau +\sum _{j=1}^n\int _{0}^{|y_j|}e^{-\tau ^2/\sigma ^2}d\tau . \end{aligned}$$

The last inequality is guaranteed by the fact that \(e^{-\tau /\sigma ^2}\) is nonnegative and decreasing for \(\tau \in [0,\infty )\). Therefore, we have \(J_\sigma (\mathbf{x }+\mathbf{y })\le J_\sigma (\mathbf{x })+J_\sigma (\mathbf{y }).\) \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, W., Lou, Y., Qin, J. et al. A Novel Regularization Based on the Error Function for Sparse Recovery. J Sci Comput 87, 31 (2021). https://doi.org/10.1007/s10915-021-01443-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01443-w

Keywords

Mathematics Subject Classification

Navigation