Skip to main content
Log in

High-Order Hybridizable Discontinuous Galerkin Formulation for One-Phase Flow Through Porous Media

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present a stable high-order hybridizable discontinuous Galerkin (HDG) formulation coupled with high-order diagonal implicit Runge–Kuta (DIRK) schemes to simulate slightly compressible one-phase flow through porous media. The HDG stability depends on the selection of a single parameter and its definition is crucial to ensure the stability and to achieve the high-order properties of the method. Thus, we extend the work of Nguyen et al. in J Comput Phys 228, 8841–8855, 2009 to deduce an analytical expression for the stabilization parameter using the material parameters of the problem and the Engquist-Osher monotone flux scheme. The formulation is high-order accurate for the pressure, the flux and the velocity with the same convergence rate of P+1, being P the polynomial degree of the approximation. This is important because high-order methods have the potential to reduce the computational cost while obtaining more accurate solutions with less dissipation and dispersion errors than low order methods. The formulation can use unstructured meshes to capture the heterogeneous properties of the reservoir. In addition, it is conservative at the element level, which is important when solving PDE’s in conservative form. Moreover, a hybridization procedure can be applied to reduce the size of the global linear system. To keep these advantages, we use DIRK schemes to perform the time integration. DIRK schemes are high-order accurate and have a low memory footprint. We show numerical evidence of the optimal convergence rates obtained with the proposed formulation. Finally, we present several examples to illustrate the capabilities of the formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abushaikha, A.S., Voskov, D.V., Tchelepi, H.A.: Fully implicit mixed-hybrid finite-element discretization for general purpose subsurface reservoir simulation. J. Comput. Phys. 346, 514–538 (2017)

    Article  MathSciNet  Google Scholar 

  2. Arbogast, T., Juntunen, M., Pool, J., Wheeler, M.F.: A discontinuous Galerkin method for two-phase flow in a porous medium enforcing H (div) velocity and continuous capillary pressure. Comput. Geosci. 17(6), 1055–1078 (2013)

    Article  MathSciNet  Google Scholar 

  3. Aziz, K., Settari, A.: Petroleum Reservoir Simulation. Chapman & Hall (1979)

  4. Babuska, I., Szabo, B.A., Katz, I.N.: The p-version of the finite element method. SIAM J. Numer. Anal. 18(3), 515–545 (1981)

    Article  MathSciNet  Google Scholar 

  5. Bastian, P.: A fully-coupled discontinuous Galerkin method for two-phase flow in porous media with discontinuous capillary pressure. Comput. Geosci. 18(5), 779–796 (2014)

    Article  MathSciNet  Google Scholar 

  6. Brezzi, F., Hughes, T.J., Marini, L.D., Masud, A.: Mixed discontinuous Galerkin methods for Darcy flow. J. Sci. Comput. 22(1–3), 119–145 (2005)

    Article  MathSciNet  Google Scholar 

  7. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. John Wiley & Sons (2016)

  8. Chen, Z., Huan, G., Ma, Y.: Computational Methods for Multiphase Flows in Porous Media. SIAM (2006)

  9. Cossé, R.: Oil and Gas Field Development Techniques: Basics of Reservoir Engineering. Éditions Technip (1993)

  10. Costa-Solé, A., Ruiz-Gironés, E., Sarrate, J.: An HDG formulation for incompressible and immiscible two-phase porous media flow problems. Int. J. Comput. Fluid Dyn. 33(4), 137–148 (2019)

    Article  MathSciNet  Google Scholar 

  11. Donea, J., Huerta, A.: Finite Element Methods for Flow Problems. John Wiley & Sons (2003)

  12. Epshteyn, Y.Y.: Hp primal discontinuous Galerkin finite element methods for two-phase flow in porous media. Ph.D. thesis, University of Pittsburgh (2007)

  13. Ern, A., Mozolevski, I., Schuh, L.: Discontinuous Galerkin approximation of two-phase flows in heterogeneous porous media with discontinuous capillary pressures. Comput. Methods Appl. Mech. Eng. 199(23–24), 1491–1501 (2010)

    Article  MathSciNet  Google Scholar 

  14. Fabien, M.S., Knepley, M.G., Rivière, B.M.: A hybridizable discontinuous Galerkin method for two-phase flow in heterogeneous porous media. Int. J. Numer. Meth. Eng. 116(3), 161–177 (2018)

    Article  MathSciNet  Google Scholar 

  15. Fabien, M.S., Knepley, M.G., Rivière, B.M.: A high order hybridizable discontinuous Galerkin method for incompressible miscible displacement in heterogeneous media. Results Appl. Math. 100089 (2020)

  16. Gargallo-Peiró, A., Roca, X., Peraire, J., Sarrate, J.: Optimization of a regularized distortion measure to generate curved high-order unstructured tetrahedral meshes. Int. J. Numer. Meth. Eng. 103(5), 342–363 (2015)

    Article  MathSciNet  Google Scholar 

  17. Gargallo-Peiró, A., Roca, X., Peraire, J., Sarrate, J.: A distortion measure to validate and generate curved high-order meshes on CAD surfaces with independence of parameterization. Int. J. Numer. Methods Eng. 106(13), 1100–1130 (2016). Nme.5162

  18. Giorgiani, G., Fernández-Méndez, S., Huerta, A.: Hybridizable discontinuous Galerkin p-adaptivity for wave propagation problems. Int. J. Numer. Methods Fluids 72(12), 1244–1262 (2013)

    Article  MathSciNet  Google Scholar 

  19. Hou, J., Chen, J., Sun, S., Chen, Z.: Adaptive mixed-hybrid and penalty discontinuous Galerkin method for two-phase flow in heterogeneous media. J. Comput. Appl. Math. 307, 262–283 (2016)

    Article  MathSciNet  Google Scholar 

  20. Huerta, A., Angeloski, A., Roca, X., Peraire, J.: Efficiency of high-order elements for continuous and discontinuous Galerkin methods. Int. J. Numer. Methods Eng. 96(9), 529–560 (2013)

    Article  MathSciNet  Google Scholar 

  21. Hughes, T.J., Masud, A., Wan, J.: A stabilized mixed discontinuous Galerkin method for Darcy flow. Comput. Methods Appl. Mech. Eng. 195(25–28), 3347–3381 (2006)

    Article  MathSciNet  Google Scholar 

  22. Jamei, M., Ghafouri, H.: A novel discontinuous Galerkin model for two-phase flow in porous media using an improved IMPES method. Int. J. Numer. Methods Heat Fluid Flow 26(1), 284–306 (2016)

    Article  MathSciNet  Google Scholar 

  23. Kennedy, C.A., Carpenter, M.H.: Diagonally implicit Runge–Kutta methods for ordinary differential equations a review. Tech. Rep. NASA/TM-2016-219173, NASA (2016)

  24. Ketcheson, D., Seibold, B., Shirokoff, D., Zhou, D.: DIRK schemes with high weak stage order. arXiv preprint arXiv:1811.01285 (2018)

  25. Kirby, R., Sherwin, S., Cockburn, B.: To CG or to HDG: a comparative study. J. Sci. Comput. 51(1), 183–212 (2012)

    Article  MathSciNet  Google Scholar 

  26. Klieber, W., Rivière, B.: Adaptive simulations of two-phase flow by discontinuous Galerkin methods. Comput. Methods Appl. Mech. Eng. 196(1–3), 404–419 (2006)

    Article  MathSciNet  Google Scholar 

  27. LeVeque, R.J.: Numerical Methods for Conservation Laws. Springer Science & Business Media (1992)

  28. Li, J., Riviere, B.: High order discontinuous Galerkin method for simulating miscible flooding in porous media. Comput. Geosci. 19(6), 1251–1268 (2015)

    Article  MathSciNet  Google Scholar 

  29. Löhner, R.: Error and work estimates for high-order elements. Int. J. Numer. Methods Fluids 67(12), 2184–2188 (2011)

    Article  MathSciNet  Google Scholar 

  30. Löhner, R.: Improved error and work estimates for high-order elements. Int. J. Numer. Methods Fluids 72(11), 1207–1218 (2013)

    Article  MathSciNet  Google Scholar 

  31. Luo, Y., Feng, M., Xu, Y.: A stabilized mixed discontinuous Galerkin method for the incompressible miscible displacement problem. Bound. Value Probl. 2011(1), 48 (2011)

    Article  MathSciNet  Google Scholar 

  32. Masud, A., Hughes, T.J.: A stabilized mixed finite element method for Darcy flow. Comput. Methods Appl. Mech. Eng. 191(39–40), 4341–4370 (2002)

    Article  MathSciNet  Google Scholar 

  33. Montlaur, A., Fernandez-Mendez, S., Huerta, A.: High-order implicit time integration for unsteady incompressible flows. Int. J. Numer. Methods Fluids 70(5), 603–626 (2012)

    Article  MathSciNet  Google Scholar 

  34. Natvig, J.R., Lie, K.A.: Fast computation of multiphase flow in porous media by implicit discontinuous Galerkin schemes with optimal ordering of elements. J. Comput. Phys. 227(24), 10108–10124 (2008)

    Article  MathSciNet  Google Scholar 

  35. Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for linear convection-diffusion equations. J. Comput. Phys. 228(9), 3232–3254 (2009)

    Article  MathSciNet  Google Scholar 

  36. Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection-diffusion equations. J. Comput. Phys. 228(23), 8841–8855 (2009)

    Article  MathSciNet  Google Scholar 

  37. Nguyen, N.C., Peraire, J., Cockburn, B.: High-order implicit hybridizable discontinuous Galerkin methods for acoustics and elastodynamics. J. Comput. Phys. 230(10), 3695–3718 (2011)

    Article  MathSciNet  Google Scholar 

  38. Pazner, W., Persson, P.O.: Stage-parallel fully implicit Runge–Kutta solvers for discontinuous Galerkin fluid simulations. J. Comput. Phys. 335, 700–717 (2017)

    Article  MathSciNet  Google Scholar 

  39. Radu, F.A., Nordbotten, J.M., Pop, I.S., Kumar, K.: A robust linearization scheme for finite volume based discretizations for simulation of two-phase flow in porous media. J. Comput. Appl. Math. 289, 134–141 (2015)

    Article  MathSciNet  Google Scholar 

  40. Rivière, B., Wheeler, M.F.: Discontinuous Galerkin methods for flow and transport problems in porous media. Commun. Numer. Methods Eng. 18(1), 63–68 (2002)

    Article  Google Scholar 

  41. Roca, X., Ruiz-Gironés, E., Sarrate, J.: ez4u: mesh generation environment (2010)

  42. Ruiz-Gironés, E., Roca, X., Sarrate, J.: High-order mesh curving by distortion minimization with boundary nodes free to slide on a 3D CAD representation. Comput. Aided Des. 72, 52–64 (2016)

    Article  Google Scholar 

  43. Russell, T.F., Wheeler, M.F.: Finite element and finite difference methods for continuous flows in porous media. In: The Mathematics of Reservoir Simulation, pp. 35–106. SIAM (1983)

  44. Salinas, P., Pavlidis, D., Xie, Z., Jacquemyn, C., Melnikova, Y., Jackson, M.D., Pain, C.C.: Improving the robustness of the control volume finite element method with application to multiphase porous media flow. Int. J. Numer. Methods Fluids 85(4), 235–246 (2017)

    Article  MathSciNet  Google Scholar 

  45. Salinas, P., Pavlidis, D., Xie, Z., Osman, H., Pain, C.C., Jackson, M.D.: A discontinuous control volume finite element method for multi-phase flow in heterogeneous porous media. J. Comput. Phys. 352, 602–614 (2018)

    Article  MathSciNet  Google Scholar 

  46. Selley, R.C., Sonnenberg, S.A.: Elements of Petroleum Geology. Academic Press (2014)

  47. Sevilla, R., Huerta, A.: Tutorial on hybridizable discontinuous Galerkin (HDG) for second-order elliptic problems. In: Advanced Finite Element Technologies, pp. 105–129. Springer (2016)

  48. Versteeg, H.K., Malalasekera, W.: An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Pearson education (2007)

  49. Wang, Z., Fidkowski Kand Abgrall, R., Bassi, F., Caraeni, D., Cary, A., D, H., Hartmann, R., Hillewaert, K., Huynh, H., et al.: High-order CFD methods: current status and perspective. Int. J. Numer. Methods Fluids 72(8), 811–845 (2013)

  50. Warburton, T.: An explicit construction of interpolation nodes on the simplex. J. Eng. Math. 56(3), 247–262 (2006)

    Article  MathSciNet  Google Scholar 

  51. Zhu, J., Taylor, Z., Zienkiewicz, O.: The Finite Element Method: Its Basis and Fundamentals. Elsevier (2013)

Download references

Acknowledgements

This work has been supported by FEDER and the Spanish Government, Ministerio de Ciencia Innovación y Universidades Grant Project Contract PGC2018-097257-B-C33 and Ministerio de Economía y Competitividad under Grant BES-2015-072833.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eloi Ruiz-Gironés.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A Jacobian Terms

In this “Appendix”, we write the Jacobian terms required to solve Eq. (25) of the Newton–Raphson method. First, we deduce the partial derivatives of the numerical convective flux, \({\hat{\mathbf {F}}}_{h}\cdot \mathbf {n}\), Eq. (12), respect to the pressure, \({p_{}}_{h}\), and its trace, \(\hat{p}_{h}\)

$$\begin{aligned} { \dfrac{\partial {\hat{\mathbf {F}}_{h}}\cdot \mathbf {n}}{\partial {{p_{}}_j}} = \left\{ \begin{array}{ll} \left( \dfrac{\mathbf {F}({p_{}}_h)\cdot \mathbf {n}-{\hat{\mathbf {F}}_{h}}\cdot \mathbf {n}}{({p_{}}_h-\hat{p}_{h})} \right) N_{j} &{} \mathrm {if\ } \left( \mathbf {K}\mathbf {g}\right) \cdot \mathbf {n}\ge 0, \\ 0 &{} \mathrm {if\ } \left( \mathbf {K}\mathbf {g}\right) \cdot \mathbf {n}< 0, \end{array} \right. } \end{aligned}$$
(36)
$$\begin{aligned} { \dfrac{\partial {\hat{\mathbf {F}}_{h}}\cdot \mathbf {n}}{\partial {{\hat{p}_{j}}}} = \left\{ \begin{array}{ll} \left( \dfrac{-\mathbf {F}(\hat{p}_{h})\cdot \mathbf {n}+{\hat{\mathbf {F}}_{h}}\cdot \mathbf {n}}{({p_{}}_h-\hat{p}_{h})} \right) N_{j}^{f} &{} \mathrm {if\ } \left( \mathbf {K}\mathbf {g}\right) \cdot \mathbf {n}\ge 0, \\ \mathbf {F}'(\hat{p}_{h}) N_{j}^{f} &{} \mathrm {if\ } \left( \mathbf {K}\mathbf {g}\right) \cdot \mathbf {n}< 0, \end{array} \right. } \end{aligned}$$
(37)

where \({p_{}}_{h}\) and \(\hat{p}_{h}\) are defined in Eqs. (16) and (17), respectively. Note that, for \(p_{h} = \hat{p}_{h}\) the first equations of Eqs. (36) and (37) becomes

$$\begin{aligned} \lim _{p_{h} \rightarrow \hat{p}_{h}} \dfrac{\partial {{\hat{\mathbf {F}}}_{h}}\cdot \mathbf {n}}{\partial {{p_{}}_j}} = \lim _{p_{h} \rightarrow \hat{p}_{h}} \dfrac{\partial {{\hat{\mathbf {F}}}_{h}}\cdot \mathbf {n}}{\partial {{\hat{p}_{j}}}} = \dfrac{1}{2} \mathbf {F}'(\hat{p}_{h}) . \end{aligned}$$

The partial derivatives of Eqs. (16) to (18) are

$$\begin{aligned} \dfrac{\partial {\mathbf {q}_{}}_{h} }{\partial q_{ij}} = N_{i}{\mathbf {e}}_{j} ,\qquad \dfrac{\partial {p_{}}_{h}}{\partial {p_{}}_i} =N_{i} ,\qquad \dfrac{\partial p_{}}{\partial {{\dot{p_{}}}}_j} =N_{j}\Delta t a_{ii} ,\qquad \dfrac{\partial {{{\hat{p_{}}}}_{h}}}{\partial {p_{}}_j} =N_{j}^{f}. \end{aligned}$$

Finally, we obtain the partial derivative of \({{\hat{\mathbf {F}}}_{h}}\cdot \mathbf {n}\) respect to \({\dot{p_{}}}_j\) as

$$\begin{aligned} \dfrac{\partial {\hat{\mathbf {F}}}_{h}\cdot \mathbf {n}}{\partial {\dot{p_{}}}_j} = \dfrac{\partial {\hat{\mathbf {F}}}_{h}\cdot \mathbf {n}}{\partial {p_{}}_j} \cdot \dfrac{\partial {p_{}}_{h}}{\partial {{\dot{p_{}}}}_i} = \Delta t a_{ii}\dfrac{\partial {\hat{\mathbf {F}}}_{h}\cdot \mathbf {n}}{\partial {p_{}}_j}. \end{aligned}$$

Thus, the elemental Jacobian coefficients are

$$\begin{aligned} ({{{\mathbf {J}}}}_{{q}_{}{q}_{}}^{e})_{ij,kl}= & {} \dfrac{\partial }{\partial {{q}_{}}_{kl}}\left( {\mathbf {A}}^{-1}{\mathbf {q}_{}}_{h}, {N_{i}{\mathbf {e}}_{j}} \right) _e =({\mathbf {A}}^{-1}N_{k}{\mathbf {e}}_{l}, N_{i}{\mathbf {e}}_{j})_e \\ ({{{\mathbf {J}}}}_{{q}_{}\dot{p_{}}}^{e})_{ij,k}= & {} \dfrac{\partial }{\partial {\dot{p_{}}_k}}\left( ({{p_{}}_{i}}, \nabla \cdot N_{i}{\mathbf {e}}_{j})_e + {({{\mathbf {A}}}^{-1}{{\mathbf {q}_{}}}_{h}, N_{i}{\mathbf {e}}_{j})_e} \right) \\= & {} \Delta t a_{ii}\left( \bigg (-{\mathbf {q}_{}}_{h}\mu _{}{\mathbf {K}}^{-1}\dfrac{{\rho _{}}_{ref}c_{f}N_{k}}{{\rho _{}({p_{}}_{i})}^{2}}, N_{i}{\mathbf {e}}_{j}\bigg )_e-\bigg (N_{k}, \dfrac{\partial N_{i}}{\partial x_j}\bigg )_e \right) \\ ({{{\mathbf {J}}}}_{{q}_{}\hat{p_{}}}^{e,f})_{ij,k}= & {} \dfrac{\partial }{\partial {\hat{p_{}}}_{k}} {\langle {\hat{p_{}}}_{h}, N_{i}{\mathbf {e}}_{j}\cdot {\mathbf {n}}\rangle _{\partial e} } = \langle N_{k}^{f}, N_{i}{\mathbf {n}}_j\rangle _{\partial e} \\ ({{{\mathbf {J}}}}_{\dot{p_{}}{q}_{}}^{e})_{i,jk}= & {} \dfrac{\partial }{\partial {{q}_{}}_{jk}}\left( -({{\mathbf {q}_{}}}_{h},\nabla N_{i})_e +\langle {\mathbf {q}_{}}_{h}\cdot \mathbf {n},\ N_{i}\rangle _{\partial e} \right) = -(N_{j}{\mathbf {e}}_{k},\nabla N_{i})_e + \langle N_{j}{\mathbf {n}}_{k}, N_{i}\rangle _{\partial e} \\ ({{{\mathbf {J}}}}_{\dot{p_{}}\dot{p_{}}}^{e})_{i,j}= & {} \dfrac{\partial }{\partial {\dot{p_{}}_j}}\left( {(s{\dot{{p_{}}}}_{h}, N_{i})_e} - ({\mathbf {F}}_{h},\nabla N_{i})_e + \langle \hat{\mathbf {F}}_{h}\cdot \mathbf {n},\ N_{i}\rangle _{\partial e} + \langle \tau _{\text {diff}}\ {p_{}}_{i},\ N_{i}\rangle _{\partial e} - {\langle \tau _{\text {diff}}\ {{\hat{p_{}}}_{h},\ N_{i}\rangle _{\partial e}}} \right) \\= & {} \bigg ( \big ( c_{t}\Delta t a_{ii}(c_{r}{\phi }_{ref}\rho _{}+ \phi c_{f}{\rho _{}}_{ref})N_{j} , N_{i}\big )_e +\bigg (\phi \rho _{}({p_{}}_{i})c_{t}\dfrac{\partial {\dot{{p_{}}}}_{}}{\partial {p_{}}_{j}},N_{i}\bigg )_e \bigg ) \\&\quad -\, \bigg ( \Delta t a_{ii}\dfrac{\mathbf {K}\nabla z\mathrm {g}}{\mu _{}}2\rho _{}c_{f}{\rho _{}}_{ref}N_{j}, \nabla N_{i} \bigg )_e + {\langle \dfrac{\partial }{\partial {\dot{p_{}}}_{j}}\hat{\mathbf {F}}_{h}\cdot \mathbf {n},\ N_{i}\rangle _{\partial e}} \\&\quad +\, \bigg \langle { {\Delta t a_{ii}}\left( \dfrac{\mathbf {K}}{\mu _{}l}c_{f}{\rho _{}}_{ref}{p_{}}_{i}+\tau _{\text {diff}}\right) N_{j},N_{i}} \bigg \rangle _{\partial e} + \bigg \langle {\Delta t a_{ii}}\dfrac{\mathbf {K}}{\mu _{}l}c_{f}{\rho _{}}_{ref}\hat{p}_{h}, N_{i}\bigg \rangle _{\partial e} \\ ({{{\mathbf {J}}}}_{\dot{p_{}}\hat{p_{}}}^{e,f})_{i,j}= & {} \dfrac{\partial }{\partial {\hat{p_{}}}_{j}}\left( \langle \hat{\mathbf {F}}_{h}\cdot \mathbf {n}, N_{i} \rangle _{\partial e} - {\langle {\tau _{\text {diff}}\ {\hat{p_{}}}_{h}, N_{i} \rangle _{\partial e}}} \right) = \langle \dfrac{\partial }{\partial {\hat{p_{}}}_{j}}\hat{\mathbf {F}}_{h}\cdot \mathbf {n},\ N_{i}\rangle _{\partial e} - {\langle {\tau _{\text {diff}}N_{j}^{f}, N_{i}\rangle _{\partial e}}} \\ ({{{\mathbf {J}}}}_{\hat{p_{}}{q}_{}}^{e,f})_{i,jk}= & {} \dfrac{\partial }{\partial {{q}_{}}_{jk}} {\langle {\mathbf {q}_{}}_{h}\cdot \mathbf {n},\ N_{i}^{f} \rangle _{\partial e} } = \langle N_{j}{\mathbf {n}}_{k}, N_{i}^{f} \rangle _{\partial e} \\ ({{{\mathbf {J}}}}_{\hat{p_{}}\dot{p_{}}}^{e,f})_{i,j}= & {} \dfrac{\partial }{\partial {\dot{p_{}}_j}}\left( \langle \hat{\mathbf {F}}_{h}\cdot \mathbf {n},\ N_{i}^{f} \rangle _{\partial e} + \langle {\tau _{\text {diff}}\ {{p_{}}_{i}},\ N_{i}^{f} \rangle _{\partial e}} - \langle {\tau _{\text {diff}}\ {\hat{p}_{h}},\ N_{i}^{f} \rangle _{\partial e}} \right) \\= & {} {\langle \dfrac{\partial }{\partial {\dot{p_{}}_j}} \hat{\mathbf {F}}_{h}\cdot \mathbf {n},\ N_{i}^{f}\rangle _{\partial e}} + \bigg \langle { {\Delta t a_{ii}}\left( \dfrac{\mathbf {K}}{\mu _{}l}c_{f}{\rho _{}}_{ref}{p_{}}_{i}+\tau _{\text {diff}}\right) N_{j},N_{i}} \bigg \rangle _{\partial e} \\&\quad -\, \bigg \langle \Delta t a_{ii}{{\dfrac{\mathbf {K}}{\mu _{}l}c_{f}{\rho _{}}_{ref}N_{j}\hat{p}_{h}},\ N_{i}^{f}} \bigg \rangle _{\partial e} \\ ({{{\mathbf {J}}}}_{\hat{p_{}}\hat{p_{}}}^{e,f})_{i,j}= & {} \dfrac{\partial }{\partial {\hat{p_{}}}_{j}}\left( \langle \hat{\mathbf {F}}_{h}\cdot \mathbf {n},\ N_{i}^{f}\rangle _{\partial e} - \langle {\tau _{\text {diff}}\ {\hat{p_{}}}_{h},\ N_{i}^{f}\rangle _{\partial e}} \right) = \langle \dfrac{\partial }{\partial {\hat{p_{}}}_{j}}\hat{\mathbf {F}}_{h}\cdot \mathbf {n},\ N_{i}^{f}\rangle _{\partial e} - \langle {\tau _{\text {diff}}\ {N_{j}^{f}},\ N_{i}^{f} \rangle _{\partial e}} \end{aligned}$$

B Temporal Discretization Schemes

This second part of the “Appendix” contains the Butcher’s tables of the temporal schemes used in the examples. The stability conditions of each one are

Scheme

Stability

Backward

L-stable

DIRK2s2

A-stable

DIRK3s3

L-stable

DIRK4s6

A-stable

see [7, 23, 24, 33] for more details.

Table 6 Butcher’s table for the backward scheme
Table 7 Butcher’s table for the DIRK2-s2 scheme
Table 8 Butcher’s table for the DIRK3-s3 scheme
Table 9 Butcher’s table for the DIRK4-s6 scheme

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa-Solé, A., Ruiz-Gironés, E. & Sarrate, J. High-Order Hybridizable Discontinuous Galerkin Formulation for One-Phase Flow Through Porous Media. J Sci Comput 87, 29 (2021). https://doi.org/10.1007/s10915-021-01436-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01436-9

Keywords

Navigation