Skip to main content
Log in

Qfold: a new modeling paradigm for the RNA folding problem

  • Published:
Journal of Heuristics Aims and scope Submit manuscript

Abstract

Ribonucleic acid (RNA) molecules play informational, structural, and metabolic roles in all living cells. RNAs are chains of nucleotides containing bases {A, C, G, U} that interact via base pairings to determine higher order structure and functionality. The RNA folding problem is to predict one or more secondary RNA structures from a given primary sequence of bases. From a mathematical modeling perspective, solutions to the RNA folding problem come from minimizing the thermodynamic free energy of a structure by selecting which bases will be paired, subject to a set of constraints. Here we report on a Quadratic Unconstrained Binary Optimization (QUBO) modeling paradigm that fits naturally with the parameters and constraints required for RNA folding prediction. Three QUBO models are presented along with a hybrid metaheuristic algorithm. Extensive testing results show a strong positive correlation with benchmark results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Andronescu, M., Bereg, V., Hoos, H.H., Condon, A.: RNA STRAND: the RNA secondary structure and statistical analysis database. BMC Bioinform. 9(1), 340 (2008)

    Article  Google Scholar 

  • Barahona, F., Grotschel, M., Junger, M., Reainelt, G.: An application of combinatorial optimization to statistical physics and circuit layout design. Oper. Res. 36(3), 493–513 (1988)

    Article  Google Scholar 

  • Beasley, J.E.: OR-Library: distributing test problems via electronic mail. J. Oper. Res. Soc. 41(11), 1069–1072 (1990)

    Article  Google Scholar 

  • Boothby, T.K.A.D., Roy, A.: Fast clique minor generation in Chimera qubit connectivity graphs. Quantum Inf. Process. 15(1), 495–508 (2016)

    Article  MathSciNet  Google Scholar 

  • Chen, X. et al.: RNA secondary structure prediction by learning unrolled algorithms. In: International Conference of Learning Presentations (2020)

  • Choi, V.: Minor-embedding in adiabatic quantum computation: I. The parameter setting problem. Quantum Inf. Process. 7, 193–201 (2008)

    Article  MathSciNet  Google Scholar 

  • D-Wave Systems: D-Wave (2020). https://www.dwavesys.com/

  • Fallmann, J., et al.: Recent advances in RNA folding. J. Biotechnol. 261, 97–104 (2017)

    Article  Google Scholar 

  • Findeiss, S., et al.: In silico design of ligand triggered RNA switches. Methods 143, 90–101 (2018)

    Article  Google Scholar 

  • Forrester, R., Greenberg, H.: Quadratic binary programming models in computational biology. Algorithmic Oper. Res. 3(2), 110–129 (2008)

    MathSciNet  MATH  Google Scholar 

  • Fujitsu: Digital Annealer—Quantum Computing Technology, Available Today (2020). https://www.fujitsu.com/global/services/business-services/digital-annealer/

  • Gardner, P., Giegerich, R.: A comprehensive comparison of comparative RNA structure prediction approaches. Bioinformatics 5, 140 (2004)

    Google Scholar 

  • Glover, F.: Exploiting Local Optimality in Metaheuristic Search (2020). https://arxiv.org/ftp/arxiv/papers/2010/2010.05394.pdf

  • Glover, F., Alidaee, B., Rego, C., Kochenberger, G.: One-pass heuristics for large-scale unconstrained binary quadratic problems. Eur. J. Oper. Res. 13(2), 272–287 (2002)

    Article  MathSciNet  Google Scholar 

  • Glover, F., Kochenberger, G., Du, Y.: Quantum bridge analytics I: a tutorial on formulating and using QUBO models. 4OR Q. J. Oper. Res. 17, 335–371 (2019)

    Article  MathSciNet  Google Scholar 

  • Glover, F., Lewis, M., Kochenberger, G.: Logical and inequality implications for reducing the size and difficulty of quadratic unconstrained binary optimization problems. Eur. J. Oper. Res. 265(3), 829–842 (2018)

    Article  MathSciNet  Google Scholar 

  • Gusfield, D.: Chapter 6 The RNA-folding problem. In: Integer Linear Programming in Computational and Systems Biology: An Entry-Level Text and Course. Cambridge University Press, New York (2019)

  • Hammer, P., Rudeanu, S.: Boolean Methods in Operations Research and Related Areas. Sprnger, Berlin (1968)

    Book  Google Scholar 

  • Huang, L., et al.: LinearFold: linear-time approximate RNA folding by 5’-to-3’dynamic programming and beam search. Bioinformatics 35, 295–304 (2019)

    Article  Google Scholar 

  • ILOG, C.I.: V12 User's Manual for CPLEX (2019)

  • Kelley, S.: Kelly Bioinformatics (2020). https://www.kelleybioinfo.org/algorithms/default.php?o=3#

  • Kelly, S., Didulo, D.: Computational Biology: A Hypertextbook, 1st edn. ASM Press, Washington (2018)

    Book  Google Scholar 

  • Kerpediev, P., Hammer, S., Hofacker, I.: Forna (force-directed RNA): simple and effective online RNA secondary structure diagrams. Bioinformatics 31(20), 3377–3379 (2015)

    Article  Google Scholar 

  • Kochenberger, G., Glover, F., Alidaee, B., Rego, C.: A unified modeling and solution framework for combinatorial optimization problems. OR Spectrum 26(3), 237–250 (2004)

    Article  Google Scholar 

  • Kochenberger, G., et al.: The unconstrained binary quadratic programming problem: a survey. J. Comb. Optim. 28, 58–81 (2014)

    Article  MathSciNet  Google Scholar 

  • Laguna, M., Glover, F.: Integrating target analysis and tabu search for improved scheduling systems. Expert Syst. Appl. 6, 287–292 (1993)

    Article  Google Scholar 

  • Lewis, M., Kochenberger, G.: Probabilistic multistart with path relinking for solving the unconstrained binary quadratic problem. Int J Oper Res 26(1), 13–33 (2016)

    Article  MathSciNet  Google Scholar 

  • Lucas, A.: Ising formulations of many NP problems. Front. Phys. 2, 5 (2014)

    Article  Google Scholar 

  • Mamuye, A., Merelli, E., Tesei, L.: A graph grammar for modelling RNA folding. Electr. Proc. Theor. Comput. Sci. 231, 31–41 (2016)

    Article  MathSciNet  Google Scholar 

  • Mathews, D.: Free Energy and Enthalpy Change Parameters (2020). https://rna.urmc.rochester.edu/NNDB/turner04/index.html

  • Mathews, D.H.: How to benchmark RNA secondary structure prediction accuracy. Methods 162, 60–67 (2019)

    Article  Google Scholar 

  • Mauri, G.R., Lorena, L.A.N.: A column generation approach for the unconstrained binary quadratic programming problem. Eur. J. Oper. Res. 217, 69–74 (2012)

    Article  MathSciNet  Google Scholar 

  • Meta-Analytics: Alpha-QUBO: Optimization Technology for the modern age (2020). http://meta-analytics.net/Home/AlphaQUBO. Accessed 2020

  • Palubeckis, G.: Iterated tabu search for the unconstrained binary quadratic optimization problem. Informatica 17(2), 279–296 (2006)

    Article  MathSciNet  Google Scholar 

  • Pardalos, P., Jha, S.: Complexity of uniqueness and local search in quadratic 0–1 programming. Oper Res Lett 11(2), 119–123 (1992)

    Article  MathSciNet  Google Scholar 

  • Pardalos, P.M., Rodgers, G.P.: Computational aspects of a branch and bound algorithm for quadratic zero-one programming. Computing 45(2), 131–144 (1990a)

    Article  MathSciNet  Google Scholar 

  • RNA STRAND Database: RNA STRAND (2008). http://www.rnasoft.ca/strand/. Accessed 2020 June.

  • Saad, S., Backofen, R., Ponty, Y.: Impact of the Energy Model on the Complexity of RNA Folding with Pseudoknots. In: Karkkainen, J., Stoye, J. (eds.) Combinatorial Pattern Matching, pp. 321–333. Springer, Berlin (2012)

    Google Scholar 

  • Shi, S., et al.: Prediction of the RNA secondary structure using a multi-population assisted quantum genetic algorithm. Hum Heredity 84, 1–8 (2019)

    Article  Google Scholar 

  • Singh, J., Hanson, J., Paliwal, K., Zhou, Y.: RNA secondary structure prediction using an ensemble of two-dimensional deep neural networks and transfer learning. Nat. Commun. 12, 1–13 (2019)

    Google Scholar 

  • Turner, D., Mathews, D.: NNDB: the nearest neighbor parameter database for predicting stability of nucleic acid secondary structure. Nucleic Acids Res. 38, 280–282 (2009)

    Article  Google Scholar 

  • Verma, A.: Qfold (2020). https://github.com/amitverma1509/Qfold. Accessed 25 June 2020

  • Vienna RNA Web Service: RNA Secondary Structure Visualization Using a Force Directed Graph Layout (2020). http://rna.tbi.univie.ac.at/forna/. Accessed 2020

  • Wang, Y., Lu, Z., Glover, F., Hao, J.: Path relinking for unconstrained binary quadratic programming. Eur. J. Oper. Res. 223(3), 595–604 (2012)

    Article  MathSciNet  Google Scholar 

  • Watson, J.D., Crick, F.H.C.: A structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953)

    Article  Google Scholar 

  • Yan, Z., Hamilton, W., Blanchette, M.: Graph neural representational learning of RNA secondary structures for predicting RNA-protein interactions (2020). https://doi.org/10.1101/2020.02.11.931030

  • Zhang, H., et al.: A new method of RNA secondary structure prediction based on convolutional neural network and dynamic programming. Front. Genet. 10, 467 (2019)

    Article  Google Scholar 

  • Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 9, 133–148 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark W. Lewis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lewis, M.W., Verma, A. & Eckdahl, T.T. Qfold: a new modeling paradigm for the RNA folding problem. J Heuristics 27, 695–717 (2021). https://doi.org/10.1007/s10732-021-09471-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10732-021-09471-3

Keywords

Navigation