Skip to main content
Log in

Electrochemical Detection of Ascorbic acid in Orange on Iron(III) Oxide Nanoparticles Modified Screen Printed Carbon Electrode

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

This study reports the electrochemical detection of ascorbic acid (AA) at screen printed carbon electrode (SPCE) modified with iron(III) oxide nanoparticle. Iron(III) nanoparticle was synthesized from Callistemon viminalis leaf extract (CV-Fe3O4NP). SPCE/CV-Fe3O4NP electrode showed faster electron transport in terms of the current response to AA oxidation compare to bare SPCE, which is due to the presence of CV-Fe3O4NP. The dynamic range for the detection of AA was from 10 to 100 μM. Limit of detection for AA on modified SPCE/CV-Fe3O4NP electrode was 15.7 μM which compared favorably with other electrodes investigated. The selectivity of the modified SPCE/CV-Fe3O4NP electrode was also determined. The designed sensor showed good selectivity to AA in the presence of interfering specie DA of same concentration (0.1 mM). Real sample analysis was carried out to establish the practical feasibility of the developed sensor (SPCE/CV-Fe3O4NP).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. J. Devaki and R. L. Raveendran (2017). In: Vitamin C. IntechOpen.

  2. S. Liu, X. Jiang, and M. Yang (2019). Microchim. Acta 186, 445.

    Article  CAS  Google Scholar 

  3. A. N. Farida, E. Fitriany, A. Baktir, F. Kurniawan, and M. Harsini (2019). Environ. Earth Sci. 217, 012004.

    Google Scholar 

  4. F. J. Barba, M. Esteve, and A. Frígola (2014). Stud. Nat. Prod. Chem. 41, 321–346.

    Article  CAS  Google Scholar 

  5. A. Meščić Macan, T. Gazivoda Kraljević, and S. Raić-Malić (2019). Antioxidants 8, 247.

    Article  PubMed Central  CAS  Google Scholar 

  6. Z. Gazdik, O. Zitka, J. Petrlova, V. Adam, J. Zehnalek, A. Horna, V. Reznicek, M. Beklova, and R. Kizek (2008). Sensors 8, 7097–7112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. I. Sálusová, K. Cinková, B. Brtková, M. Vojs, M. Marton, and Ľ Švorc (2017). Acta Chim. Slov. 10, 21–28.

    Article  CAS  Google Scholar 

  8. V. Lobo, A. Patil, A. Phatak, and N. Chandra (2010). Pharmacogn. Rev. 4, 118–126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. L. A. Pham-Huy, H. He, and C. Pham-Huy (2008). IJBS 4, 89.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. M. S. Sitorus and D. R. Anggraini (2017). Mater. Sci. Eng. R 180, 012093.

    Google Scholar 

  11. A. Khan, A. Rashid, R. Younas, and R. Chong (2016). Int. Nano Lett. 6, 21–26.

    Article  CAS  Google Scholar 

  12. K. Sun, J. Qiu, J. Liu, and Y. Miao (2009). J. Mater. Sci. 44, 754–758.

    Article  CAS  Google Scholar 

  13. B. M. Danet and H. Y. Aboul-Enein (2000). J. Lumin. 155, 305–309.

    Article  Google Scholar 

  14. L. Suntornsuk, W. Gritsanapun, S. Nilkamhank, and A. Paochom (2002). J. Pharm. Biomed. Anal. 28, 849–855.

    Article  CAS  PubMed  Google Scholar 

  15. M. I. H. A. Majidi and H. Y. AlQubury (2016). JCHPS 9, 2972–3297.

    Google Scholar 

  16. X. Wu, Y. X. Diao, C. X. Sun, J. H. Yang, Y. B. Wang, and S. N. Sun (2003). Talanta 59, 95–99.

    Article  CAS  PubMed  Google Scholar 

  17. A. Khan, M. I. Khan, Z. Iqbal, Y. Shah, L. Ahmad, S. Nazir, D. G. Watson, J. A. Khan, F. Nasir, and A. Khan (2011). Talanta 84, 789–801.

    Article  CAS  PubMed  Google Scholar 

  18. A. Tai and E. Gohda (2007). J. Chromatogr. B 853, 214–220.

    Article  CAS  Google Scholar 

  19. K. Zarei (2015). Cogent Chem. 1, 1109172.

    Article  CAS  Google Scholar 

  20. M. Rees, A. G. Wright, S. Holdcroft, and P. Bertoncello (2020). Sensors 20, 443.

    Article  CAS  PubMed Central  Google Scholar 

  21. W. Argoubi, A. Rabti, S. B. Aoun, and N. Raouafi (2019). RSC Adv. 9, 37384–37390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. C. S. Lee, S. H. Yu, and T. H. Kim (2018). Nanomaterials 8, 13.

    Article  CAS  Google Scholar 

  23. C. Zou, J. Zhong, S. Li, H. Wang, J. Wang, B. Yan, and Y. Du (2017). J. Electroanal. Chem. 805, 110–119.

    Article  CAS  Google Scholar 

  24. M. Mazloum-Ardakani, M. Ali Sheikh-Mohseni, and M. B. Fatemeh (2014). J. Springer 20, 431–437.

    CAS  Google Scholar 

  25. D. Zhao, G. Yu, K. Tian, and C. Xu (2016). Biosens. Bioelectron. 82, 119–126.

    Article  CAS  PubMed  Google Scholar 

  26. Y. J. Yang (2015). Sens. Actuator B 221, 750–759.

    Article  CAS  Google Scholar 

  27. Y. Bao, J. Song, Y. Mao, D. Han, F. Yang, L. Niu, and A. Ivaska (2011). Electroanalysis 23, 878–884.

    Article  CAS  Google Scholar 

  28. M. Salem, Y. Xia, A. Allan, S. Rohani, and E. R. Gillies (2015). RSC Adv. 5, 37521–37366.

    Article  CAS  Google Scholar 

  29. X. L. Li, H. Li, G. Q. Liu, Z. W. Deng, S. L. Wu, P. H. Li, Z. S. Xu, H. B. Xu, and P. K. Chu (2012). Biomaterials 33, 3013–3025.

    Article  PubMed  CAS  Google Scholar 

  30. K. D. Wani, B. S. Kadu, P. Mansara, P. Gupta, A. V. Deore, R. C. Chikate, P. Poddar, S. D. Dhole, and R. Kaul-Ghanekar (2014). PLoS ONE 9, e107315.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. K. P. Jayanta and B. J. Kwang-Hyun (2017). Photochem. Photobiol. B 173, 291–300.

    Article  CAS  Google Scholar 

  32. G. Sathishkumar, V. Logeshwaran, S. Sarathbabu, P. K. Jha, M. Jeyaraj, C. Rajkuberan, N. Senthilkumar, and S. Sivaramakrishnan (2018). Artif. Cell Nanomed. B 46, 589–598.

    Article  CAS  Google Scholar 

  33. M. Vicky, S. Rodney, S. Ajay, and M. Hardik (2010). J. Pharm. Bioallied Sci. 2, 282–289.

    Article  CAS  Google Scholar 

  34. S. Narayanan, B. N. Sathy, U. Mony, M. Koyakutty, S. V. Nair, and D. Menon (2012). ACS Appl. Mater. Interfaces 4, 251–260.

    Article  CAS  PubMed  Google Scholar 

  35. Y. Ling, K. Wei, Y. Luo, X. Gao, and S. Zhong (2011). Biomaterials 32, 7139–7150.

    Article  CAS  PubMed  Google Scholar 

  36. A. V. Ramesh, D. Rama Devi, S. Mohan Botsa, and K. Basavaiah (2018). J. Asian Ceram. 6, 145–155.

    Article  Google Scholar 

  37. Y. P. Yew, K. Shameli, M. Miyake, N. Kuwano, N. B. B. A. Khairudin, S. E. B. Mohamad, and K. X. Lee (2016). Nanoscale Res. Lett. 11, 1–7.

    Article  CAS  Google Scholar 

  38. G. E. Uwaya, O. E. Fayemi, E. S. M. Sherif, H. Junaedi, and E. E. Ebenso (2020). Materials 13, 4894.

    Article  CAS  PubMed Central  Google Scholar 

  39. M. A. J. Kouhbanani, N. Beheshtkhoo, A. M. Amani, S. Taghizadeh, V. Beigi, A. Z. Bazmandeh, and N. Khalaf (2018). Mater. Res. Express 5, 115013.

    Article  CAS  Google Scholar 

  40. O. E. Fayemi, A. S. Adekunle, and E. E. Ebenso (2015). J. Biosens. Bioelectron. 6, 190.

    Article  CAS  Google Scholar 

  41. C. Chin-Hua, Z. Sarani, S. Kasra, and A. Nilofar (2012). J. Magn. Magn. Mater. 324, 4147–4150.

    Article  CAS  Google Scholar 

  42. P. L. Hariani, M. Faizal, R. Ridwan, M. Marsi, and D. Setiabudidaya (2013). IJESDM 4, 336–340.

    Article  CAS  Google Scholar 

  43. T. Peik-See, A. Pandikumar, H. Nay-Ming, L. Hong-Ngee, and Y. Sulaiman (2014). Sensors 14, 15227–15243.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. A. B. Chimezie, R. Hajian, N. A. Yusof, P. M. Woi, and N. Shams (2017). J. Electroanal. Chem. 796, 33–42.

    Article  CAS  Google Scholar 

  45. N. G. Mphuthi, A. S. Adekunle, and E. E. Ebenso (2016). Sci. Rep. 6, 26938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. G. E. Uwaya and O. E. Fayemi (2020). Sens. Biosens. Res. 28, 100338.

    Google Scholar 

  47. O. E. Fayemi, A. S. Adekunle, B. K. Swamy, and E. E. Ebenso (2018). J. Electroanal. Chem. 818, 236–249.

    Article  CAS  Google Scholar 

  48. A. L. Kavitha, H. G. Prabu, S. A. Babu, and S. K. Suja (2013). J. Nanosci. Nanotechnol. 13, 98–104.

    Article  CAS  PubMed  Google Scholar 

  49. S. Deshmukh, G. Kandasamy, R. K. Upadhyay, G. Bhattacharya, D. Banerjee, D. Maity, and S. S. Roy (2017). J. Electroanal. Chem. 788, 91–98.

    Article  CAS  Google Scholar 

  50. S. Kanagasubbulakshmi and K. Kadirvelu (2017). Def. Life Sci. J. 2, 422–427.

    Article  Google Scholar 

  51. B. N. Olana, S. A. Kitte, and T. R. Soreta (2015). J. Serb. Chem. Soc. 80, 1161–1175.

    Article  CAS  Google Scholar 

  52. K. S. Ngai, W. T. Tan, Z. Zainal, R. B. M. Zawawi, and M. Zidan (2012). Int. J. Electrochem. Sci. 7, 4210–4222.

    CAS  Google Scholar 

  53. I. Hanafi, A. R. Daud, and S. Radiman (2013). AIP Conf. Proc. 1571, 120–124.

    Article  CAS  Google Scholar 

  54. T. Shen, T. Liu, H. Mo, Z. Yuan, F. Cui, Y. Jin, and X. Chen (2020). RSC Adv. 10 (39), 22881–22890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Z. Bitew and M. Amare (2019). Infertility 4, 5.

    Google Scholar 

  56. J. I. Gowda and S. T. Nandibewoor (2014). Asian J. Pharm. Sci. 9, 42–49.

    Article  Google Scholar 

  57. A. J. Bard and L. R. Faulkner (2001). Electrochemical methods, 2nd edn., vol. 2. John Willey and sons, New York, pp. 580–632.

  58. E. Laviron (1979). J. Electroanal. Chem. Interfacial Electrochem. 101, 19–28.

    Article  CAS  Google Scholar 

  59. J. Du, R. Yue, F. Ren, Z. Yao, F. Jiang, P. Yang, and Y. Du (2014). Biosens. Bioelectron. 53, 220–224.

    Article  CAS  PubMed  Google Scholar 

  60. M. Motshakeri, J. Travas-Sejdic, A. R. Phillips, and P. A. Kilmartin (2018). Electrochimica. Acta 265, 184–193.

    Article  CAS  Google Scholar 

  61. A. Taye and A. Sergawie (2019). Am. J. Life Sci. Res. 7, 26–48.

    Google Scholar 

  62. A. H. Reda and F. G. Gebremeskel (2016). Am. J. Appl. Chem. 4, 1–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledged the assistance of MASIIM of North-West University, NRF-Thutuka grant and the Higher Degree of North-West University, Mafikeng Campus are also acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

OEF conceptualized and designed the work and was part of the manuscript write-up. GEU carried out the experiments, interpreted some of the results and were also involved in the manuscript preparation. All the authors reviewed the manuscript and have agreed to its publication.

Corresponding author

Correspondence to Omolola E. Fayemi.

Ethics declarations

Conflict of interest

Authors confirm that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uwaya, G.E., Fayemi, O.E. Electrochemical Detection of Ascorbic acid in Orange on Iron(III) Oxide Nanoparticles Modified Screen Printed Carbon Electrode. J Clust Sci 33, 1035–1043 (2022). https://doi.org/10.1007/s10876-021-02030-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02030-7

Keywords

Navigation