Skip to main content
Log in

Thermodynamic, mechanical stabilities and thermoelectric behavior of the XVSi (X = Co, Rh) half-Heuslers

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Utilizing Boltzmann transport equations, structural, electronic, elastic, and thermoelectric properties, as well as thermodynamic stability of RhVSi and CoVSi half-Heusler compounds were investigated using the first-principle calculations in the framework of the density functional theory. The results of structural and elastic calculations and the thermodynamic phase diagrams indicate that these compounds are stable in the MgAgAs-type cubic structure with the F\(\overline{4}\)3m space group. The electronic structure was calculated using the Generalized Gradient Approximation with Tran–Blaha potential. It was found that both RhVSi and CoVSi are non-magnetic semiconductors with indirect gaps along XW direction with values of 1.20 eV and 0.92 eV, respectively. High ZT values at 1000 K of 0.79 and 0.78 were obtained for RhVSi and CoVSi. The maximum value of the Seebeck coefficient (S) value for RhVSi and CoVSi is about \(244\,\frac{{\upmu {\text{V}}}}{{\text{K}}}\) and \(226\,\frac{{\upmu {\text{V}}}}{{\text{K}}}\), respectively. The phonon dispersions reveal that the structures of these compounds are stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L E Bell Science. 321 1457 (2008)

  2. Z Feng et al Scientific Reports. 7 (1) 2572 (2017)

  3. X F Zheng, C X Liu, Y Y Yan, and Q Wang Renew. Sustain. Energy Rev. 32 486 (2014)

  4. Q Y Xue, H J Liu, D D Fan, L Cheng, B Y Zhao, & J Shi Phys. Chem. Chem. Phys. 18 17912 (2016)

  5. X Shi, L Chen and C Uher Int. Mater. Rev. 61 379 (2016)

  6. G J Snyder and E S Toberer World Sci. 101 (2011)

  7. Y Pei, X Shi, A LaLonde, H Wang, L Chen and G J Snyder Nature 473 66 (2011)

  8. W Liu et al Phys. Rev. Lett. 108 166601 (2012)

  9. R He, H S Kim, Y Lan, D Wang, S Chen and Z Ren RSC Adv. 4 64711 (2014)

  10. Y Liu, H Xie, C Fu, G J Snyder, X Zhao and T Zhu J. Mater. Chem. A, 3 22716 (2015)

  11. G M Guttmann, R Gertner, S Samuha, D Ben-Ayoun, S Haroush and Y Gelbstein MRS Commun. 8 1292 (2018)

  12. M K Han, Y Jin, D H Lee and S J Kim Materials. 10 1235 (2017)

  13. X Tan et al Materials Today Phys. 7 35 (2018)

  14. A Jafari et al Surfaces Interfaces.18 100463 (2020)

  15. L Huang, Q Zhang, B Yuan, X Lai, X Yan and Z Ren Mater. Res. Bull. 76 107 (2016)

  16. T Plirdpring et al Adv. Mater. 24 3622 (2012)

  17. E J Skoug, J D Cain and D T Morelli Appl. Phys. Lett. 98 261911 (2011)

  18. N Farahi et al ACS Appl. Energy Mater. 2(11) 8244 (2019)

  19. S A Barczak et al ACS Appl. Mater. Interfaces. 10 4786 (2018)

  20. N S Chauhan et al ACS Appl. Mater. Interfaces. 11 47830 (2019)

  21. F Shi, M S Si, J Xie, K Mi, C Xiao and Q Luo J. Appl. Phys. 122 215701(2017)

  22. J Ma et al Phys. Rev. B. 95 24411(2017)

  23. S Chibani, N Chami, O Arbouche, K Amara, and A Kafi Comput. Condens. Matter e00475 (2020)

  24. X Li et al Research 2020 (2020)

  25. M K Choudhary and P Ravindran Sustain. Energy Fuels 4 895 (2020)

  26. A Karati et al Sci. Rep. 9 1 (2019)

  27. T Graf, C Felser and S S Parkin Progress Solid State Chem. 39 1 (2011)

  28. M Shahrokhi, P Raybaud and T Le Bahers J. Mater. Chem. C, 8 9064 (2020)

  29. F Yan et al Nature Commun. 6 7308 (2015)

  30. A Boochani et al J. Mater. Chem. C, 7 13559 (2019)

  31. A Roy, J W Bennett, K M Rabe and D Vanderbilt Phys. Rev. Lett. 109 037602(2012)

  32. M Zhang, J Wei, and G Wang Phys. Lett. A. 382 673 (2018)

  33. W G Zeier et al Nature Rev. Mater. 1 1 (2016)

  34. K Xia et al Energy Environ. Sci. 12 1568 (2019)

  35. Z Liu et al Adv. Funct. Mater. 29 1905044 (2019)

  36. K Schwarz, P Blaha, and G K H Madsen Comput. Phys. Commun. 147 71 (2002)

  37. E Sjöstedt, L Nordström and D J Singh Solid State Commun. 114 15 (2000)

  38. K Schwarz and P Blaha Comput. Mater. Sci. 28 259 (2003)

  39. D Koller, F Tran and P Blaha Phys. Rev. B. 85 155109 (2012)

  40. H J Monkhorst and J D Pack Phys. Rev. B. 13 5188 (1976)

  41. M Jamal, I Relast and 2DR-optimize packages are provided by M. Jamal as Part of the Commercial Code WIEN2K (2014)

  42. G K H Madsen and D J Singh Comput. Phys. Commun. 175 67 (2006)

  43. D Alfe Comput. Phys. Commun. 180 2622 (2009)

  44. F D Murnaghan Proc. Natl. Acad. Sci. USA. 30 244 (1944)

  45. X Q Chen, R Podloucky and P Rogl J. Appl. Phys. 100 113901 (2006)

  46. J Zhang, X Zhang and Y Wang Sci. Rep. 7 1 (2017)

  47. H Shi, W Ming, D S Parker, M-H Du and D J Singh Phys. Rev. B. 95 195207(2017)

  48. Y Wang, J Cheng, M Behtash, W Tang, J Luo and K Yang Phys. Chem. Chem. Phys. 20 18515 (2018)

  49. Y Jiang, Y Shi, X Xiang, J Qi, Y Han, Z Liao and T Lu Phys. Rev. Appl. 11 054088 (2019)

  50. Q Cai, J G Wang, Y Wang and D Mei J. Phys. Chem. C. 120 19087 (2016)

  51. R Hill Proc. Phys. Soc. Sect. A. 65 349(1952)

  52. S F Pugh Lond. Edinb. Dublin Philos. Mag. J. Sci. 45 823(1954)

  53. Y Tian, B Xu and Z Zhao Int. J. Refract. Met. Hard Mater. 33 (2012)

  54. M E Fine, L D Brown and H L Marcus Scripta metallurgica. 18 951 (1984)

  55. Z Q Lv, Z F Zhang, Q Zhang, Z H Wang, S H Sun and W T Fu Solid State Sci. 56 (2016)

  56. A J Hong et al Sci. Rep. 6 22778 (2016)

  57. D Shrivastava and S P Sanyal Solid State Commun. 273 1(2018)

  58. I Galanakis, P Mavropoulos and P H Dederichs J Phys D: Appl Phys. 39 765(2006)

  59. G K H Madsen J. Am. Chem. Soc. 128 12140 (2006)

  60. D J Singh Phys. Rev. B. 81 195217 (2010)

  61. X Zhang et al Sci. Rep. 6 33120 (2016)

  62. J R Sootsman, D Y Chung and M G Kanatzidis Angewandte Chemie Int. Ed. 48 8616 (2009)

  63. B R Nag Electron transport in compound semiconductors (Vol. 11). Springer Science & Business Media (2012).

  64. H Zhu et al Nature Commun. 9 2497 (2018)

  65. C Kittel Introduction to solid state physics, Wiley, New York (2005)

  66. G A Slack J. Phys. Chem. Solids. 34 321(1973)

  67. D P Rai, A Shankar, M P Ghimire, R Khenata and R K Thapa RSC Adv. 5 95353 (2015)

  68. D F Zou, S H Xie, Y Y Liu, J G Lin and Y Y Li J. Appl. Phys. 113 193705 (2013)

  69. S N H Eliassen, A Katre, G K H Madsen, C Persson, O M Løvvik and K Berland Phys. Rev. B. 95 45202 (2017)

  70. K Kaur R Kumar and D P Rai J. Alloys Compounds, 763 1018 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Boochani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amiri, M., Boochani, A. & Nia, B.A. Thermodynamic, mechanical stabilities and thermoelectric behavior of the XVSi (X = Co, Rh) half-Heuslers. Indian J Phys 96, 1045–1057 (2022). https://doi.org/10.1007/s12648-021-02029-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02029-w

Keywords

Navigation