Skip to main content
Log in

Thermodynamic properties of fcc metals using reparameterized MEAM potentials

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The modified embedded atom method (MEAM) potentials of Jin et al. (Appl Phys A 120:189, 2015) are reparameterized through fitting the available experimental data and ab initio results of several physical properties better for seven face-centered cubic metals, Ag, Al, Au, Cu, Ni, Pd, and Pt. Results for the structure stabilities, point defects, and phonon dispersion properties are in better agreement with the measured values than those from the original MEAM potentials, showing the reliability of the reparameterized potentials. Also, the thermodynamic properties for these metals are studied within the quasi-harmonic approximation. Calculation results for the temperature dependence of lattice constants, thermal expansion coefficients, molar heat capacities at constant volume and/or constant pressure, isothermal and adiabatic bulk moduli, Grüneisen parameters, and Debye temperatures are compared to those from the earlier embedded atom methods and ab initio method calculations as well as the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M S Daw and M I Baskes Phys. Rev. B 29 6443 (1984)

    Article  ADS  Google Scholar 

  2. M I Baskes Phys. Rev. Lett. 59 2666 (1987)

    Article  ADS  Google Scholar 

  3. M I Baskes Phys. Rev. B 46 2727 (1992)

    Article  ADS  Google Scholar 

  4. R Pasianot, D Farkas and E J Savino Phys. Rev. B 43 6952 (1991)

    Article  Google Scholar 

  5. Y Ouyang, B Zhang, S Liao and Z Jin Z. Phys. B 101 161 (1996)

    Google Scholar 

  6. B Zhang, Y Ouyang, S Liao and Z Jin Physica B 262 218 (1999)

    Google Scholar 

  7. B Zhang, W Hu and X Shu Theory of embedded atom method and its application to materials science—atomic scale materials design theory (Hunan University Press, Changsha, 2003).

    Google Scholar 

  8. H Jin, J An and Y Jong Appl. Phys. A 120 189 (2015)

    Google Scholar 

  9. H Jin, J Pak amd Y Jong Appl. Phys. A 123 257 (2017)

    Article  Google Scholar 

  10. C Jon, H Jin and C Hwang Radiat. Effects Defects Solids 172 575 (2017)

    Article  MathSciNet  Google Scholar 

  11. G Jong, P Song and H Jin Indian J. Phys. 94 753 (2020)

    Google Scholar 

  12. S M Foiles, M I Baskes and M S Daw Phys. Rev. B 33 7983 (1986)

    Article  Google Scholar 

  13. S M Foiles and J B Adams Phys. Rev. B 40 5909 (1989)

    Article  ADS  Google Scholar 

  14. J Mei, J W Davenport and G W Fernando Phys. Rev. B 43 4653 (1991)

    Article  Google Scholar 

  15. J Mei and J W Davenport Phys. Rev. B 46 21 (1992)

    Article  ADS  Google Scholar 

  16. Q Bian, S K Bose and R C Shukla J. Phys. Chem. Solids 69 168 (2008)

    Article  ADS  Google Scholar 

  17. S Ryu and W Cai Modelling Simul. Mater. Sci. Eng. 16 085005 (2008)

    Article  ADS  Google Scholar 

  18. D J Oh and R A Johnson J. Mater. Res. 3 471 (1988)

    Article  ADS  Google Scholar 

  19. W Hu, X Shu and B Zhang Comp. Mater. Sci. 23 175 (2002)

    Google Scholar 

  20. H S Park and J A Zimmerman Phys. Rev. B 72 054106 (2005)

    Article  ADS  Google Scholar 

  21. B J Lee and M I Baskes Phys. Rev. B 62 8564 (2000)

    Article  ADS  Google Scholar 

  22. F H Stillinger and T A Weber Phys. Rev. B 31 5262 (1985)

    Article  ADS  Google Scholar 

  23. M W Finnis and J E Sinclair Philos. Mag. A 50 45 (1984)

    Article  ADS  Google Scholar 

  24. G Kresse, J Hafner Phys. Rev. B 49 14251 (1994)

    Article  ADS  Google Scholar 

  25. P E Blöchl Phys. Rev. B 50 17953 (1994)

    Article  ADS  Google Scholar 

  26. H W Sheng, M J Kramer, A Cadien, T Fujita and M W Chen Phys. Rev. B 83 134118 (2011)

    Article  Google Scholar 

  27. H L Skriver The LMTO Method, Springer Series in Solid-State Sciences, vol. 41 (Springer, Berlin, 1984)

    Google Scholar 

  28. P N Ram, V Gairola and P D Semalty J. Phys. Chem. Solids 94 41 (2016)

    Article  ADS  Google Scholar 

  29. W A Kamitakahara and B N Brockhouse Phys. Lett. A 29 639 (1980)

    Article  ADS  Google Scholar 

  30. G Nilsson and S Ronaldson Phys. Rev. B 7 2393 (1973)

    Article  ADS  Google Scholar 

  31. Y S Touloukian, R K Kirby, R E Taylor and P D Desai Thermophysical Properties of Matter vol. 12: Thermal Expansion-Metallic Elements and Alloys (New York: Plenum, 1975)

    Google Scholar 

  32. Y S Touloukian, R K Kirby, R E Taylor and P D Desai Thermophysical Properties of Matter, The TPRC Data Series, Thermal Expansion, Metallic Elements and Alloys (New York: Plenum, 1977)

    Google Scholar 

  33. A Debernardi, M Alouani and H Dreysse Phys. Rev. B 63 064305 (2001)

    Article  Google Scholar 

  34. D C Wallace Thermodynamics of Crystals (Wiley, Toronto, 1972)

    Book  Google Scholar 

  35. Y S Touloukian and E H Buyco Thermophysical Properties of Matter, The TPRC Data Series, Specific Heat, Metallic Elements and Alloys, vol. 4 (New York: Plenum, 1970)

    Google Scholar 

  36. D R Lide CRC Handbook of Chemistry and Physics (CRC press, New York, 1998).

    Google Scholar 

  37. V L Moruzzi, J F Janak and A R Williams Calculated Electronic Properties of Metals (Pergamon, New York, 1978)

    Google Scholar 

  38. C Kittel Introduction to Solid State Physics (Wiley, New York, 1996)

    MATH  Google Scholar 

  39. J R Neighbors and G A Alers Phys. Rev. 111 707 (1958)

    Article  ADS  Google Scholar 

  40. W C Overton and J Gaffney Phys. Rev. 98 969 (1955)

    Article  ADS  Google Scholar 

  41. C V Pandya, P R Vyas, T C Pandya and V B Gohel Bull. Mater. Sci. 25 63 (2002)

    Google Scholar 

  42. D L Martin Phys. Rev. 141 576 (1966)

    Article  ADS  Google Scholar 

  43. J W Lynn, H G. Smith and R M Nicklow Phys. Rev. B 8 3493 (1973).

    Article  ADS  Google Scholar 

  44. W D Compton, K A Gschneidner, M T Hutchings, H Rabin and M P Tosi Solid States Physics, Advances in Research and Applications, vol. 16 (Academic Press, New York, 1964)

    Google Scholar 

  45. J J Wollenberger Physical Metallurgy, edited by R. W. Cahnand P. Hansen (Amsterdam, North-Holland, 1983), p. 1139

  46. B L Eyre Crystals: Point Defects in Encyclopedia of Materials: Science and Technology (Oxford University, London, 2001)

    Google Scholar 

  47. A Seeger, D Schumacher, W Schilling and J Diethl Vacancies and Interstitials in Metals (North-Holland, Amsterdam, 1970)

    Google Scholar 

  48. W Balluffi J. Nucl. Mater. 69 240 (1978)

    Article  ADS  Google Scholar 

  49. J B Adams, S M Foiles and W G Wolfer J. Mater, Res. 4 (1989) 102.

    Article  ADS  Google Scholar 

  50. W Schule and R Scholz Proc. Yamada Conf. on Point Defect and Interactions in Metals, edited by J Takamura, M Doyama and M Kiritani (University of Tokyo Press, Tokyo, 1982)

  51. E C Svensson, B N Brockhouse and J.M. Rowe Phys. Rev. 155 619 (1967)

    Article  ADS  Google Scholar 

  52. R J Birgeneau, J Cordes, G Dolling and A D B Woods Phys. Rev. A 136 1359 (1964)

    Google Scholar 

  53. A P Miiller and B N Brockhouse Can. J. Phys. 49 704 (1971)

    Article  ADS  Google Scholar 

  54. D H Dutton, B N Brockhouse and A P Miiller Can. J. Phys. 50 2915 (1972)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hak-Son Jin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, HS., Song, P., Jon, CG. et al. Thermodynamic properties of fcc metals using reparameterized MEAM potentials. Indian J Phys 95, 2553–2565 (2021). https://doi.org/10.1007/s12648-020-01921-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01921-1

Keywords

Navigation