Skip to main content

Advertisement

Log in

Optimization to optimization (OtoO): optimize monarchy butterfly method with stochastics multi-parameter divergence method for benchmark functions and load frequency control

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Optimization to optimization (OtoO) approach is proposed in this study. It aims to increase an optimization algorithm performance. OtoO approach has two types of optimization methods. First is essential algorithm, which is used for solution of the basic problem. Second is auxiliary algorithm that adjusted the parameters of the essential algorithm. In this study, the monarchy butterfly optimization (MBO) method and stochastic multi-parameter divergence optimization (SMDO) method were defined as essential algorithm and auxiliary algorithm, respectively. Constant parameters of the MBO method that affect performance (Keep, Max. Step Size, period and BAR) are primarily optimized on benchmark functions with the SMDO algorithm, and results are compared with each other and classical MBO, ABC (Artificial Bee Colony), ACO (Ant Colony), BBO (Biogeography-based), SGA (Simple Genetic) and DE (Differential Evolution) algorithms. In addition, OtoO approach is also tried via composite benchmark functions. In addition, PI and PID controllers were designed for the load frequency control of a hybrid power system. Results are compared with the FA (Firefly Algorithm) and GA (Genetic Algorithm) results. Results demonstrate that the performance of algorithms can be increased without disrupting the basic philosophy of algorithms and hybridizing algorithms with the proposed OtoO approach via benchmark functions and engineering problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

References

  1. Bazaraa MS, Sherali HD, Shetty CM (2005) Nonlinear programming: theory and algorithms

  2. Qais MH, Hasanien HM, Alghuwainem S (2019) Identification of electrical parameters for three-diode photovoltaic model using analytical and sunflower optimization algorithm. Appl Energy. https://doi.org/10.1016/j.apenergy.2019.05.013

    Article  Google Scholar 

  3. Qais MH, Hasanien HM, Alghuwainem S, Nouh AS (2019) Coyote optimization algorithm for parameters extraction of three-diode photovoltaic models of photovoltaic modules. Energy 187:116001. https://doi.org/10.1016/j.energy.2019.116001

    Article  Google Scholar 

  4. Rao Y, Shao Z, Ahangarnejad AH et al (2019) Shark Smell Optimizer applied to identify the optimal parameters of the proton exchange membrane fuel cell model. Energy Convers Manag 182:1–8. https://doi.org/10.1016/j.enconman.2018.12.057

    Article  Google Scholar 

  5. Akdag O, Ates A, Yeroglu C (2020) Modification of Harris hawks optimization algorithm with random distribution functions for optimum power flow problem. Neural Comput Appl. https://doi.org/10.1007/s00521-020-05073-5

    Article  Google Scholar 

  6. Bouchekara H (2020) Solution of the optimal power flow problem considering security constraints using an improved chaotic electromagnetic field optimization algorithm. Neural Comput Appl. https://doi.org/10.1007/s00521-019-04298-3

    Article  Google Scholar 

  7. Ates A, Baykant Alagoz B, Kavuran G, Yeroglu C (2020) Fine-tuning of feedback gain control for hover quad copter rotors by stochastic optimization methods. Iran J Sci Technol Trans Electr Eng. https://doi.org/10.1007/s40998-020-00323-7

    Article  Google Scholar 

  8. Rai A, Das DK (2020) Optimal PID controller design by enhanced class topper optimization algorithm for load frequency control of interconnected power systems. Smart Sci 8:125–151. https://doi.org/10.1080/23080477.2020.1805540

    Article  Google Scholar 

  9. Abdel-Basset M, Chang V, Mohamed R (2020) HSMA_WOA: a hybrid novel Slime mould algorithm with whale optimization algorithm for tackling the image segmentation problem of chest X-ray images. Appl Soft Comput J 95:106642. https://doi.org/10.1016/j.asoc.2020.106642

    Article  Google Scholar 

  10. He L, Huang S (2020) An efficient krill herd algorithm for color image multilevel thresholding segmentation problem. Appl Soft Comput J. https://doi.org/10.1016/j.asoc.2020.106063

    Article  Google Scholar 

  11. Yue C, Liang J, Qu B et al (2020) A novel multiobjective optimization algorithm for sparse signal reconstruction. Signal Processing 167:107292. https://doi.org/10.1016/j.sigpro.2019.107292

    Article  Google Scholar 

  12. Yin B, Wang C, Abza F (2020) New brain tumor classification method based on an improved version of whale optimization algorithm. Biomed Signal Process Control 56:101728. https://doi.org/10.1016/j.bspc.2019.101728

    Article  Google Scholar 

  13. Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: 2009 World Congress on Nature and Biologically Inspired Computing, NABIC 2009—Proceedings

  14. Wang GG, Deb S, Cui Z (2019) Monarch butterfly optimization. Neural Comput Appl. https://doi.org/10.1007/s00521-015-1923-y

    Article  Google Scholar 

  15. Wang GG (2018) Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Memetic Comput 10:151–164. https://doi.org/10.1007/s12293-016-0212-3

    Article  Google Scholar 

  16. Shamsaldin AS, Rashid TA, Al-Rashid Agha RA et al (2019) Donkey and smuggler optimization algorithm: a collaborative working approach to path finding. J Comput Des Eng. https://doi.org/10.1016/j.jcde.2019.04.004

    Article  Google Scholar 

  17. Heidari AA, Mirjalili S, Faris H et al (2019) Harris hawks optimization: algorithm and applications. Futur Gener Comput Syst 97:849–872. https://doi.org/10.1016/j.future.2019.02.028

    Article  Google Scholar 

  18. Kaveh A, Dadras A (2017) A novel meta-heuristic optimization algorithm: thermal exchange optimization. Adv Eng Softw 110:69–84. https://doi.org/10.1016/j.advengsoft.2017.03.014

    Article  Google Scholar 

  19. Faramarzi A, Heidarinejad M, Stephens B, Mirjalili S (2020) Equilibrium optimizer: a novel optimization algorithm. Knowledge-Based Syst. https://doi.org/10.1016/j.knosys.2019.105190

    Article  Google Scholar 

  20. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci (Ny) 179:2232–2248. https://doi.org/10.1016/j.ins.2009.03.004

    Article  MATH  Google Scholar 

  21. Xie L, Zeng J, Cui Z (2009) General framework of artificial physics optimization algorithm. In: 2009 World Congress on Nature and Biologically Inspired Computing, NABIC 2009—Proceedings. pp 1321–1326

  22. Awasthi A, Venkitusamy K, Padmanaban S et al (2017) Optimal planning of electric vehicle charging station at the distribution system using hybrid optimization algorithm. Energy. https://doi.org/10.1016/j.energy.2017.05.094

    Article  Google Scholar 

  23. Yu D, Wang Y, Liu H et al (2019) System identification of PEM fuel cells using an improved Elman neural network and a new hybrid optimization algorithm. Energy Reports 5:1365–1374. https://doi.org/10.1016/j.egyr.2019.09.039

    Article  Google Scholar 

  24. Luo C, Huang C, Cao J et al (2019) Short-term traffic flow prediction based on least square support vector machine with hybrid optimization algorithm. Neural Process Lett 50:2305–2322. https://doi.org/10.1007/s11063-019-09994-8

    Article  Google Scholar 

  25. Ateş A, Yeroğlu C (2018) Modified artificial physics optimization for multi-parameter functions. Iran J Sci Technol Trans Electr Eng. https://doi.org/10.1007/s40998-018-0082-4

    Article  MATH  Google Scholar 

  26. Mortazavi A (2019) Interactive fuzzy search algorithm: a new self-adaptive hybrid optimization algorithm. Eng Appl Artif Intell 81:270–282. https://doi.org/10.1016/j.engappai.2019.03.005

    Article  Google Scholar 

  27. Zhang Z, Ding S, Jia W (2019) A hybrid optimization algorithm based on cuckoo search and differential evolution for solving constrained engineering problems. Eng Appl Artif Intell 85:254–268. https://doi.org/10.1016/j.engappai.2019.06.017

    Article  Google Scholar 

  28. Yıldız AR, Yıldız BS, Sait SM et al (2019) A new hybrid Harris hawks-Nelder-Mead optimization algorithm for solving design and manufacturing problems. Mater Test 61:735–743. https://doi.org/10.3139/120.111378

    Article  Google Scholar 

  29. Trelea IC (2003) The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf Process Lett 85:317–325. https://doi.org/10.1016/S0020-0190(02)00447-7

    Article  MathSciNet  MATH  Google Scholar 

  30. Alagoz BB, Ates A, Yeroglu C (2013) Auto-tuning of PID controller according to fractional-order reference model approximation for DC rotor control. Mechatronics. https://doi.org/10.1016/j.mechatronics.2013.05.001

    Article  Google Scholar 

  31. Yeroǧlu C, Ateş A (2014) A stochastic multi-parameters divergence method for online auto-tuning of fractional order PID controllers. J Franklin Inst. https://doi.org/10.1016/j.jfranklin.2013.12.006

    Article  MathSciNet  Google Scholar 

  32. Ateş A, Yeroglu C SMDO Algoritması ile İki Serbestlik Dereceli FOPID Kontrol Çevrimi Tasarımı Two Degrees of Freedom FOPID Control Loop Design via SMDO Algorithm. 6–11

  33. Liang JJ, Suganthan PN, Deb K (2005) Novel composition test functions for numerical global optimization. In: Proceedings—2005 IEEE Swarm Intelligence Symposium, SIS 2005. pp 71–78

  34. Abd-Elazim SM, Ali ES (2018) Firefly algorithm-based load frequency controller design of a two area system composing of PV grid and thermal generator. Electr Eng. https://doi.org/10.1007/s00202-017-0576-5

    Article  Google Scholar 

  35. Haes Alhelou H, Hamedani Golshan ME, Hajiakbari Fini M (2018) Wind driven optimization algorithm application to load frequency control in interconnected power systems considering GRC and GDB nonlinearities. Electr Power Components Syst 46:1223–1238. https://doi.org/10.1080/15325008.2018.1488895

    Article  Google Scholar 

  36. Gheisarnejad M (2018) An effective hybrid harmony search and cuckoo optimization algorithm based fuzzy PID controller for load frequency control. Appl Soft Comput J. https://doi.org/10.1016/j.asoc.2018.01.007

    Article  Google Scholar 

  37. Guha D, Roy PK, Banerjee S (2020) Grasshopper optimization algorithm scaled fractional order PI-D controller applied to reduced order model of load frequency control system. Int J Model Simul 40:217–242. https://doi.org/10.1080/02286203.2019.1596727

    Article  Google Scholar 

  38. Guha D, Roy PK, Banerjee S (2020) Whale optimization algorithm applied to load frequency control of a mixed power system considering nonlinearities and PLL dynamics. Energy Syst. https://doi.org/10.1007/s12667-019-00326-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullah Ates.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ates, A., Akpamukcu, M. Optimization to optimization (OtoO): optimize monarchy butterfly method with stochastics multi-parameter divergence method for benchmark functions and load frequency control. Engineering with Computers 38 (Suppl 3), 1735–1754 (2022). https://doi.org/10.1007/s00366-021-01364-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01364-0

Keywords

Navigation