Skip to main content
Log in

A fault tolerant routing scheme for advanced metering infrastructure: an approach towards smart grid

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

The wireless sensor network is gaining significant attention because of its ubiquitous deployability nature. In general, the role of the wireless sensor network is remarkable in smart city applications for data sensing, collecting, and transmitting. Advanced metering infrastructure is an automatic system for the reading of electricity consumption by individual users. The reading of data from meters normally communicated over a wireless medium. Apart from collecting and sensing, routing is one of the major attributes in the AMI network. Successful communication is possible when the link and node are in the proper state. In this paper, we propose a fault-tolerant routing mechanism named Grid Topological Routing scheme to provide an efficient route in case of encountering a faulty path. The simulation shows better performance against the Routing Protocol for Low-Power and Lossy Networks and Ad-Hoc On-Demand Vector algorithm in terms of power consumption and packet delivery ratio. This model is explicitly designed for the smart grid in India.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Misra, S., Goswami, S. : Routing in Wireless Sensor Networks. In Network Routing (eds S. Misra and S. Goswami). https://doi.org/10.1002/9781119114864.ch11 (2017)

  2. Nico Saputro, Kemal Akkaya, Suleyman Uludag, A survey of routing protocols for smart grid communications, Computer Networks,Volume 56, Issue 11, 2012, Pages 2742-2771, ISSN 1389-1286, https://doi.org/10.1016/j.comnet.2012.03.027

  3. https://en.wikipedia.org/wiki/SCADA

  4. T. Winter et al., RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks, Internet Engineering Task Force (IETF), document RFC 6550, Mar. 2012

  5. Zheng, J., Gao, D.W., Lin, L., “Smart Meters in Smart Grid: An Overview,”, : IEEE Green Technologies Conference (GreenTech). Denver, CO 2013, 57–64 (2013). https://doi.org/10.1109/GreenTech.2013.17

  6. Priyadarshi, R., Gupta, B., Anurag, A.: Deployment techniques in wireless sensor networks: a survey, classification, challenges, and future research issues. J Supercomput 76, 7333–7373 (2020). https://doi.org/10.1007/s11227-020-03166-5

    Article  Google Scholar 

  7. Mohassel,R. R., Fung, A. S., Mohammadi ,F., Raahemifar,K.: ”A survey on advanced metering infrastructure and its application in Smart Grids,” 2014 IEEE 27th Canadian Conference on Electrical and Computer Engineering (CCECE), Toronto, ON, (2014), pp. 1-8, https://doi.org/10.1109/CCECE.2014.6901102.

  8. Abdel-A. Edris, Brian W. D’Andrade, 2 - Transmission Grid Smart Technologies, Editor(s): Brian W. D’Andrade, The Power Grid, Academic Press, 2017, Pages 37-55, ISBN 9780128053218, https://doi.org/10.1016/B978-0-12-805321-8.00002-1

  9. Quevedo, J.O., “Smart distribution transformer applied to Smart Grids,”, , et al.: Brazilian Power Electronics Conference. Gramado 2013, 1046–1053 (2013). https://doi.org/10.1109/COBEP.2013.6785244

  10. https://electricenergyonline.com/energy/magazine/895/article/Getting-the-most-from-your-AMI-and-MDM-Systems.html

  11. Applicability Statement for the Routing Protocol for Low-Power and Lossy Networks (RPL) in Advanced Metering Infrastructure (AMI) Networks, document RFC 8036, Jan. 2017

  12. M. Qasem et al., Load Balancing Objective Function in RPL Draftqasem- Roll-RPL-Load Balancing-00 Draft, document, Feb. 2017. [Online]. Available: https://datatracker.ietf.org/doc/html/draft-qasem-roll-rpl-loadbalancing-00

  13. Lloret, J., Tomas, J., Canovas, A., Parra, L.: An integrated IoT architecture for smart metering. IEEE Commun. Mag. 54(12), 50–57 (Dec. 2016)

    Article  Google Scholar 

  14. Kim, H.-S., Kim, H., Paek, J., Bahk, S.: Load balancing under heavy traffic in RPL routing protocol for low power and lossy networks. IEEE Trans. Mobile Comput. 16(4), 964–979 (Apr. 2016)

    Article  Google Scholar 

  15. Vaidya, B., Makrakis, D., Mouftah, H., “Secure multipath routing for AMI network in Smart Grid,”, : IEEE 31st International Performance Computing and Communications Conference (IPCCC). Austin, TX 2012, 408–415 (2012). https://doi.org/10.1109/PCCC.2012.6407784

  16. O.Gnawali et al., The Minimum Rank With Hysteresis Objective Function, document RFC 6719, Sep. 2012

  17. P. Thubert et al., Objective Function Zero for the Routing Protocol for Low-Power and Lossy Networks (RPL), document RFC 6552, Mar. (2012)

  18. Oscar G. Bautista and Kemal Akkaya. 2020. Extending IEEE 802.11s Mesh Routing for 3-D Mobile Drone Applications in ns-3. In Proceedings of the: Workshop on ns-3 (WNS3 2020), pp. 25–32. Association for Computing Machinery, New York, NY, USA (2020)

  19. Cadger,F., Curran,K., Santos,J., Moffett,S.: ”A Survey of Geographical Routing in Wireless Ad-Hoc Networks,” in IEEE Communications Surveys & Tutorials, vol. 15, no. 2, pp. 621-653, Second Quarter (2013), https://doi.org/10.1109/SURV.2012.062612.00109.

  20. A Survey.Al Aghbari, Z., Khedr, A.M., Osamy, W. , et al.: Routing in Wireless Sensor Networks Using Optimization Techniques. Wireless Pers Commun 111, 2407–2434 (2020). https://doi.org/10.1007/s11277-019-06993-9

    Article  Google Scholar 

  21. Sarao, P.: Ad Hoc On-Demand Multipath Distance Vector Based Routing in Ad-Hoc Networks. Wireless Pers Commun 114, 2933–2953 (2020). https://doi.org/10.1007/s11277-020-07511-y

    Article  Google Scholar 

  22. Bennett, C., Wicker, S.:Decreased time delay and security enhancement recommendations for AMI smart meter networks. In:Innovative smart grid technologies (ISGT);(2010).p.1–6. http://dx.doi.org/10.1109/ISGT.2010.5434780

  23. Toimoor, J.: Study of the scalability of modified AODV-UU routing protocol for the smart grid application [M.Sc.thesis].University of Windsor;(2013)

  24. Alagan Ramasamy Rajeswari: A Mobile Ad Hoc Network Routing Protocols: A Comparative Study, Recent Trends in Communication Networks, Pinaki Mitra. IntechOpen (2020). https://doi.org/10.5772/intechopen.92550

  25. Pratibha Kevre L.Compare three reactive routing protocols in grid based cluster wireless sensor network using qualnet simulator.IntJ Appl Sci Eng Res 2014;3(2):532-9. http://dx.doi.org/10.6088/ijaser.030200025

  26. Iwao, T.,Yamada, K.,Yura, M.,Nakaya, Y.,Cardenas, A.A.,Lee, S.,et al.Dynamic data forwarding in wireless mesh networks.In:IEEE 2010 first IEEE international conference on smart grid communications;(2010).p.385–90 http://dx.doi.org/10.1109/SMARTGRID.2010.5622074

  27. Dawson-Haggerty, S., Tavakoli, A., Culler, D.: Hydro:a hybrid routing protocol for low-power and lossy networks.In:2010 First IEEE international conference on smart grid communications(Smart Grid Comm);(2010).p.268–73. http://dx.doi. org/10.1109/SMARTGRID.2010.5622053

  28. Ma,Y., Wang,G., Zhou,X.: ”An overview on smart distribution grid,” 2015 IEEE International Conference on Mechatronics and Automation (ICMA), Beijing, (2015), pp. 313-318, https://doi.org/10.1109/ICMA.2015.7237503.

  29. Nico Saputro, Kemal Akkaya, Suleyman Uludag, A survey of routing protocols for smart grid communications, Computer Networks, Volume 56, Issue 11, 2012, Pages 2742-2771, ISSN 1389-1286, https://doi.org/10.1016/j.comnet.2012.03.027

  30. Sabbah, A.I., El-Mougy, A., Ibnkahla, M.: A Survey of Networking Challenges and Routing Protocols in Smart Grids. IEEE Transactions on Industrial Informatics 10(1), 210–221 (Feb. 2014). https://doi.org/10.1109/TII.2013.2258930

    Article  Google Scholar 

  31. Ancillotti, E., Bruno, R., Conti, M.: The role of the RPL routing protocol for smart grid communications. IEEE Communications Magazine 51(1), 75–83 (January 2013). https://doi.org/10.1109/MCOM.2013.6400442

    Article  Google Scholar 

  32. Zeddam, Ahmed, Berger, Lars Torsten, Schwager, Andreas, Escudero-Garzás, J. Joaquín, Power Line Communications for Smart Grid Applications,Journal of Electrical and Computer Engineering, 2013, 10.1155/2013/712376

  33. Sayed,K., Gabbar,H.A.: Chapter 18 - SCADA and smart energy grid control automation, Editor(s): Hossam A. Gabbar, Smart Energy Grid Engineering, Academic Press, (2017), Pages 481-514, ISBN 9780128053430, https://doi.org/10.1016/B978-0-12-805343-0.00018-8

  34. Lešek Franek, Ladislav Šastný, Petr Fiedler, Prepaid energy in time of Smart Metering, IFAC Proceedings Volumes, Volume 46, Issue 28, 2013, Pages 428-433, ISSN 1474-6670, ISBN 9783902823533, https://doi.org/10.3182/20130925-3-CZ-3023.00015

  35. Abbas,E. I., Safi,M. E., Jaber,M. A.: ”Design and Implementation Prepaid Energy Meter Supported by RFID and GSM Technologies,” 2018 International Conference on Advanced Science and Engineering (ICOASE), Duhok, (2018), pp. 216-220, https://doi.org/10.1109/ICOASE.2018.8548870.

  36. Chawla, Yash, Kowalska-Pyzalska, Anna, Skowroóska-Szmer, Anna, Perspectives of smart meters’ roll-out in India: An empirical analysis of consumers’ awareness and preferences, Energy Policy, Volume 146, : 111798. ISSN 0301–4215, (2020). https://doi.org/10.1016/j.enpol.2020.111798

  37. João F. Martins, Anabela Gonçalves Pronto, Vasco Delgado-Gomes, Mihai Sanduleac, Chapter 4 - Smart Meters and Advanced Metering Infrastructure, Editor(s): Akın Taşcıkaraoğlu, Ozan Erdinç, Pathways to a Smarter Power System, Academic Press, 2019, Pages 89-114, ISBN 9780081025925, https://doi.org/10.1016/B978-0-08-102592-5.00004-1

  38. Gopi,C., Lalu,V.: Sensor Network Infrastructure for AMI in Smart Grid, Procedia Technology, Volume 24, (2016), Pages 854-863, ISSN 2212-0173, https://doi.org/10.1016/j.protcy.2016.05.133

  39. Mohapatra, Hitesh, Rath, Amiya Kumar: Survey on fault tolerance-based clustering evolution in WSN. IET Networks 9(4), 145–155 (2020). https://doi.org/10.1049/iet-net.2019.0155

    Article  Google Scholar 

  40. Hussein T. Mouftah; Melike Erol-Kantarci; Mubashir Husain Rehmani, ”Wireless Sensor Networks in Smart Cities: Applications of Channel Bonding to Meet Data Communication Requirements,” in Transportation and Power Grid in Smart Cities: Communication Networks and Services , Wiley, (2019), pp.247-268, https://doi.org/10.1002/9781119360124.ch9.

  41. Xie, H., Yan, Z., Yao, Z., Atiquzzaman, M.: Data Collection for Security Measurement in Wireless Sensor Networks: A Survey. IEEE Internet of Things Journal 6(2), 2205–2224 (April 2019). https://doi.org/10.1109/JIOT.2018.2883403

    Article  Google Scholar 

  42. Mario Di Francesco, Sajal K. Das, and Giuseppe Anastasi. 2011. Data Collection in Wireless Sensor Networks with Mobile Elements: A Survey. ACM Trans. Sen. Netw. 8, 1, Article 7 (August 2011), 31 pages, DOI:https://doi.org/10.1145/1993042.1993049

  43. Zhang, Y., Li, X., Zhang, S., Zhen, Y., “Wireless sensor network in smart grid: Applications and issue,”, : World Congress on Information and Communication Technologies. Trivandrum 2012, 1204–1208 (2012). https://doi.org/10.1109/WICT.2012.6409258

  44. https://en.wikipedia.org/wiki/Speed\_of\_light

  45. Balasubramanian, V., Kouvelas, N., Chandra, K., Prasad, R.V., Voyiatzis, A.G., Liu, W., “A unified architecture for integrating energy harvesting IoT devices with the Mobile Edge Cloud,”, : IEEE 4th World Forum on Internet of Things (WF-IoT). Singapore 2018, 13–18 (2018). https://doi.org/10.1109/WF-IoT.2018.8355198

  46. Jayaraman, R., Raja, G.: Channel assignment based coding mechanism for reliable transmission for smart cities. Cluster Comput 22, 13055–13065 (2019). https://doi.org/10.1007/s10586-017-1193-9

    Article  Google Scholar 

  47. Kavitha, M., Geetha, B.G.: An efficient city energy management system with secure routing communication using WSN. Cluster Comput 22, 13131–13142 (2019). https://doi.org/10.1007/s10586-017-1277-6

    Article  Google Scholar 

  48. Rama Abirami, K., Sumithra, M.G. Evaluation of neighbor credit value based AODV routing algorithms for selfish node behavior detection. Cluster Comput 22, 13307–13316 (2019). https://doi.org/10.1007/s10586-018-1851-6

  49. Aggarwal, S., Singh, P.: Cuckoo, Bat and Krill Herd based k-means++ clustering algorithms. Cluster Comput 22, 14169–14180 (2019). https://doi.org/10.1007/s10586-018-2262-4

    Article  Google Scholar 

  50. Wan, Z., Liu, S., Ni, W., et al.: An energy-efficient multi-level adaptive clustering routing algorithm for underwater wireless sensor networks. Cluster Comput 22, 14651–14660 (2019). https://doi.org/10.1007/s10586-018-2376-8

    Article  Google Scholar 

  51. Deepa, C., Latha, B.: HHSRP: a cluster based hybrid hierarchical secure routing protocol for wireless sensor networks. Cluster Comput 22, 10449–10465 (2019). https://doi.org/10.1007/s10586-017-1065-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitesh Mohapatra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Appendix Table 6.

Table 6 Sample Data set

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohapatra, H., Rath, A.K. A fault tolerant routing scheme for advanced metering infrastructure: an approach towards smart grid. Cluster Comput 24, 2193–2211 (2021). https://doi.org/10.1007/s10586-021-03255-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-021-03255-x

Keywords

Navigation