Skip to main content
Log in

PIV Analysis of Haemodynamics Distal to the Frozen Elephant Trunk Stent Surrogate

  • Original Article
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Purpose

The Frozen Elephant Trunk (FET) stent is a hybrid endovascular device that may be implemented in the event of an aneurysm or aortic dissection of the aortic arch or superior descending aorta. A Type 1B endoleak can lead to intrasaccular flow during systole and has been identified as a known failure of the FET stent graft. The purpose was to develop in-vitro modelling techniques to enable the investigation of the known failure.

Methods

A silicone aortic phantom and 3D printed surrogate stent graft were manufactured to investigate the haemodynamics of a Type 1B endoleak. Physiological pulsatile flow dynamics distal to the surrogate stent graft were investigated in-vitro using Particle Image Velocimetry (PIV).

Results

PIV captured recirculation zones and an endoleak distal to the surrogate stent graft. The endoleak was developed at the peak of systole and sustained until the onset of diastole. The endoleak was asymmetric, indicating a potential variation in the phantom artery wall thickness or stent alignment. Recirculation was identified on the posterior dorsal line during late systole.

Conclusions

The identification of the Type 1B endoleak proved that in-vitro modelling can be used to investigate complex compliance changes and wall motions. The recirculation may indicate the potential for long term intimal layer inflammatory issues such as atherosclerosis. These results may aid future remediation techniques or stent design. Further development of the methods used in this experiment may assist with the future testing of stents prior to animal or human trial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Alsoufi, M. S., and A. E. Elsayed. Surface roughness quality and dimensional accuracy—a comprehensive analysis of 100% infill printed parts fabricated by a personal/desktop cost-effective FDM 3D printer. Mater. Sci. Appl. 9:11–40, 2018.

    CAS  Google Scholar 

  2. Arko, F. R., K. A. Filis, S. A. Siedel, B. L. Johnson, A. R. Drake, T. J. Fogarty, and C. K. Zarins. Intrasac flow velocities predict sealing of type II endoleaks after endovascular abdominal aortic aneurysm repair. J. Vasc. Surg. 37:8–15, 2003.

    Article  Google Scholar 

  3. Beraia, M. Arterial pulse impact on blood flow. Health 2:532–540, 2010.

    Article  Google Scholar 

  4. Berry, J. L., E. Manoach, C. Mekkaoui, P. H. Rolland, J. E. Moore, and A. Rachev. Hemodynamics and wall mechanics of a compliance matching stent. In vitro and in vivo analysis. J. Vasc. Interv. Radiol. 13:97–105, 2002.

    Article  Google Scholar 

  5. Bosman, W.-M. P. F., Hinnen, J.-W., Rixen, D. J. & Hamming, J. F. 2009. Effect of Stent-Graft Compliance on Endotension After EVAR. Journal of Endovascular Therapy; Phoenix, 16, 105-13.

  6. Boutouyrie, P., S. Laurent, A. Benetos, X. J. Girerd, A. P. G. Hoeks, and M. E. Safar. Opposing effects of ageing on distal and proximal large arteries in hypertensives. J. Hypertens. 10(6):S87–S91, 1992.

    CAS  Google Scholar 

  7. Büsen, M., C. Arenz, M. Neidlin, S. Liao, T. Schmitz-Rode, U. Steinseifer, and S. J. Sonntag. Development of an In Vitro PIV Setup for preliminary investigation of the effects of aortic compliance on flow patterns and hemodynamics. Cardiovasc. Eng. Technol. 8:368–377, 2017.

    Article  Google Scholar 

  8. Caro, C. G. The Mechanics of the Circulation. Cambridge: Cambridge University Press, 2012.

    Google Scholar 

  9. Charonko, J., S. Karri, J. Schmieg, S. Prabhu, and P. Vlachos. In vitro, time-resolved PIV comparison of the effect of stent design on wall shear stress. Ann. Biomed. Eng. 37:1310–1321, 2009.

    Article  Google Scholar 

  10. Chen, H. Y., J. Hermiller, A. K. Sinha, M. Sturek, L. Zhu, and G. S. Kassab. Effects of stent sizing on endothelial and vessel wall stress: potential mechanisms for in-stent restenosis. J. Appl. Physiol. 106:1686–1691, 2009.

    Article  Google Scholar 

  11. Damberg, A., G. Schälte, R. Autschbach, and A. Hoffman. Safety and pitfalls in frozen elephant trunk implantation. Ann. Cardiothorac. Surg. 2:669–676, 2013.

    PubMed  PubMed Central  Google Scholar 

  12. Di Bartolomeo, R., G. Murana, L. Di Marco, A. Pantaleo, J. Alfonsi, A. Leone, and D. Pacini. Frozen versus conventional elephant trunk technique: application in clinical practice. Eur. J. Cardiothorac. Surg. 51:i20–i28, 2017.

    Article  Google Scholar 

  13. Geoghegan, P. H., M. C. Jermy, and D. S. Nobes. A piv comparison of the flow field and wall shear stress in rigid and compliant models of healthy carotid arteries. Journal of Mechanics in Medicine and Biology 17:1750041, 2016.

    Article  Google Scholar 

  14. Guan, Y., L. Wang, J. Lin, and M. W. King. Compliance study of endovascular stent grafts incorporated with polyester and polyurethane graft materials in both stented and unstented zones. Materials 9(8):658, 2016.

    Article  Google Scholar 

  15. Ha, H., Ziegler, M., Welander, M., Bjarnegård, N., Carlhäll, C.-J., Lindenberger, M., länne, T., Ebbers, T. & Dyverfeldt, P. 2018. Age-related vascular changes affect turbulence in aortic blood flow. Front. Physiol. 9.

  16. Hütter, L., P. H. Geoghegan, P. D. Docherty, M. S. Lazarjan, D. Clucas, and M. Jermy. Application of a meta-analysis of aortic geometry to the generation of a compliant phantom for use in particle image velocimetry experimentation. IFAC-PapersOnLine 48:407–412, 2015.

    Article  Google Scholar 

  17. Hütter, L., P. H. Geoghegan, P. D. Docherty, M. S. Lazarjan, D. Clucas, and M. Jermy. Fabrication of a compliant phantom of the human aortic arch for use in Particle Image Velocimetry (PIV) experimentation. Curr. Dir. Biomed. Eng. 2:493–497, 2016.

    Article  Google Scholar 

  18. JOTEC. E-vita OPEN PLUS Hybrid stent graft system - JOTEC [Online]. Hechingen, Germany. Available: https://www.jotec.com/en/products/thoracic-stent-grafts/e-vita-open-plus.html [Accessed].

  19. Karck, M., A. Chavan, N. Khaladj, H. Friedrich, C. Hagl, and A. Haverich. The frozen elephant trunk technique for the treatment of extensive thoracic aortic aneurysms: operative results and follow-up. Eur. J. Cardiothorac. Surg. 28:286–290, 2005.

    Article  Google Scholar 

  20. Karck, M., and H. Kamiya. Progress of the treatment for extended aortic aneurysms; is the frozen elephant trunk technique the next standard in the treatment of complex aortic disease including the arch? Eur. J. Cardio-Thorac. Surg. 33:1007–1013, 2008.

    Article  Google Scholar 

  21. Knowles, M., T. Pellisar, E. H. Murphy, G. A. Stanley, A. F. Hashmi, M. Z. Arko, and F. R. Arko. In vitro analysis of type II endoleaks and aneurysm sac pressurization on longitudinal stent-graft displacement. J. Endovasc. Ther. 18:601–606, 2011.

    Article  Google Scholar 

  22. Ku, D. N. Blood flow in arteries. Annu. Rev. Fluid Mech. 29:399–434, 1997.

    Article  Google Scholar 

  23. Lumsden, A. B. Advanced endovascular therapy of aortic disease. Oxford: Blackwell Futura, 2007.

    Book  Google Scholar 

  24. Mensel, B., J.-P. Kühn, T. Schneider, A. Quadrat, and K. Hegenscheid. Mean thoracic aortic wall thickness determination by cine MRI with steady-state free precession: validation with dark blood imaging. Academic Radiology 20:1004–1008, 2013.

    Article  Google Scholar 

  25. Milnor, W. R. Cardiovascular Physiology. New York: Oxford University Press, 1990.

    Google Scholar 

  26. Mitchell, G. F., H. Parise, E. J. Benjamin, M. G. Larson, M. J. Keyes, J. A. Vita, R. S. Vasan, and D. J. H. Levy. Changes in arterial stiffness and wave reflection with advancing age in healthy men and women: the Framingham Heart Study. 43:1239–1245, 2004.

    CAS  Google Scholar 

  27. Morris, L., F. Stefanov, N. Hynes, E. B. Diethrich, and S. Sultan. An experimental evaluation of device/arterial wall compliance mismatch for four stent-graft devices and a multi-layer flow modulator device for the treatment of abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 51:44–55, 2016.

    Article  CAS  Google Scholar 

  28. Najjari, M. R. 2019. On the Formation of Vortices Under Transient and Pulsatile Inflow Conditions in a Curved Pipe. Ph.D., The George Washington University.

  29. Najjari, M. R., and M. W. Plesniak. Secondary flow vortical structures in a 180o elastic curved vessel with torsion under steady and pulsatile inflow conditions. Phys Rev Fluids 3:013101, 2018.

    Article  Google Scholar 

  30. Nordic Society of Medical Radiology. Chapter VI: deformation of the ascending aorta during one heart cycle. Acta Radiol. 57:51–55, 1962.

    Google Scholar 

  31. O’Rourke, M. Mechanical principles in arterial disease. Hypertension 26:2–9, 1995.

    Article  Google Scholar 

  32. Pantokratoras, A. Steady laminar flow in a 90° bend. Adv. Mech. Eng. 8:1687814016669472, 2016.

    Google Scholar 

  33. Reed, C. E., R. H. Feins, T. W. Shields, and J. L. Iii. General Throacic Surgery. Philadelphia: Lippincott Williams and Wilkins, 2009.

    Google Scholar 

  34. San, O., and A. Staples. An improved model for reduced-order physiological fluid flows. J. Mech. Med. Biol. 12(3):1250052, 2012.

    Article  Google Scholar 

  35. Singh, C., X. Wang, Y. Morsi, and C. Wong. Importance of stent-graft design for aortic arch aneurysm repair. AIMS Bioeng. 4:133–150, 2017.

    Article  Google Scholar 

  36. Singh, C., C. S. Wong, and X. Wang. Medical textiles as vascular implants and their success to mimic natural arteries. J. Funct. Biomater. 6:500–525, 2015.

    Article  CAS  Google Scholar 

  37. Stalder, A., M. Russe, A. Frydrychowicz, J. Bock, J. Hennig, and M. Markl. Quantitative 2D and 3D phase contrast MRI: optimized analysis of blood flow and vessel wall parameters. Magn. Reson. Med. 60:1218–1231, 2008.

    Article  CAS  Google Scholar 

  38. Tian, D. H., B. Wan, M. Di Eusanio, D. Black, and T. D. Yan. A systematic review and meta-analysis on the safety and efficacy of the frozen elephant trunk technique in aortic arch surgery. Ann. Cardiothorac. Surg. 2:581–591, 2013.

    PubMed  PubMed Central  Google Scholar 

  39. Uchida, N., A. Katayama, K. Tamura, M. Sutoh, M. Kuraoka, N. Murao, and H. Ishihara. Long-term results of the frozen elephant trunk technique for extended aortic arch disease. Eur. J. Cardiothorac. Surg. 37:1338–1345, 2010.

    Article  Google Scholar 

  40. Westerhof, N., J.-W. Lankhaar, and B. E. Westerhof. The arterial Windkessel. Medical Biological Engineering Computing 47:131–141, 2009.

    Article  Google Scholar 

  41. WHO, W. H. O. 2012. Cardiovascular diseases (CVDs): Fact sheet No. 317. 2012. Geneva: World Health Organization.

  42. Yazdi, S. G., P. H. Geoghegan, P. D. Docherty, M. Jermy, and A. Khanafer. A review of arterial phantom fabrication methods for flow measurement using PIV techniques. Ann. Biomed. Eng. 46:1697–1721, 2018.

    Article  Google Scholar 

  43. Yazdi, S. G., L. Huetter, P. D. Docherty, P. N. Williamson, D. Clucas, M. Jermy, and P. H. Geoghegan. A novel fabrication method for compliant silicone phantoms of arterial geometry for use in particle image velocimetry of haemodynamics. Appl. Sci. 9:3811, 2019.

    Article  CAS  Google Scholar 

Download references

Authors’ contributions

PNW, PDD and AK conceptualised the study. PNW, SGY, NK and MJ undertook the experiment, PNW, PDD, AK and MJ interpreted the outcomes, PNW drafted the paper and all authors edited it.

Funding

PNW and SGY were funded by the University of Canterbury doctoral scholar fund.

Availability of data and material

Raw and post-processed data can be made to interested parties via contact with the corresponding author.

Code availability

Software used in this study is commercially available from TSI Incorporated, 500 Cardigan Road, Shoreview, Minnesota 55126, USA.

Conflict of interest

The authors have no financial interest in the outcomes of this study.

Ethical approval and Consent to participate

All experimentation was undertaken in vitro, and there were no animal or human subjects.

Consent for publication

All authors agree to publish this article in CVET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul D. Docherty.

Additional information

Associate Editor Keefe B. Manning oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williamson, P.N., Docherty, P.D., Yazdi, S.G. et al. PIV Analysis of Haemodynamics Distal to the Frozen Elephant Trunk Stent Surrogate. Cardiovasc Eng Tech 12, 373–386 (2021). https://doi.org/10.1007/s13239-021-00521-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-021-00521-2

Keywords

Navigation