Skip to main content
Log in

In vitro studies on the degradation of common rubber waste material with the latex clearing protein (Lcp1VH2) of Gordonia polyisoprenivorans VH2

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

The enzymatic degradation of the rubber polymer poly(cis-1,4-isoprene), e.g. by the latex clearing protein Lcp1VH2 of Gordonia polyisoprenivorans VH2 has been demonstrated with latex milk or pure isoprene-rubber particles, recently. Unfortunately, carbon black filled vulcanized rubber (CFVR) making the biggest part of worldwide rubber wastes, contains several harmful additives making microbial and enzymatic rubber degradation challenging. However, this study demonstrates the successful enzymatic cleavage of industrially produced CFVR. The formation of the cleavage products, oligo(cis-1,4-isoprenoids), from incubating CFVR particles with Lcp1VH2 was detected by HPLC–MS. Various organic solvents were tested to remove harmful or inhibiting additives like antioxidants to enhance product formation. The pretreatment of CFVR particles, especially with chloroform or cyclohexane, significantly improved the degradation. It was also demonstrated that reducing the particles size and thus increasing the enzymatically accessible surface area of the particles led to a strong acceleration of the degradation process. Furthermore, ATR-IR analyses showed that Lcp1VH2 led to the functionalization of the rubber particle surface with carbonyl groups by cleaving isoprene chains, still linked to the particle. Both, the oligo(cis-1,4-isoprenoids) as well as the functionalized rubber particles, are potentially important products, which can be reused as fine chemicals or as additives in rubber production. The present study, showing the enzymatic degradation of common CFVR for the first time, takes an important step towards a new way of rubber waste disposal and indicates the economic feasibility of an efficient and environmentally friendly recycling process by using the rubber oxygenase Lcp1VH2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adhikari B, De D, Maiti SD (2000) Reclamation and recycling of waste rubber. Prog Polym Sci 25:909–948

    Article  CAS  Google Scholar 

  • Altenhoff AL, de Witt J, Andler R, Steinbüchel A (2019) Impact of additives of commercial rubber compounds on the microbial and enzymatic degradation of poly(cis-1,4-isoprene). Biodegradation 30:13–26

    Article  CAS  Google Scholar 

  • Altenhoff AL, Thierbach S, Steinbüchel A (2020) High yield production of the latex clearing protein from Gordonia polyisoprenivorans VH2 in fed batch fermentations using a recombinant strain of Escherichia coli. J Biotechnol 309:92–99. https://doi.org/10.1016/j.jbiotec.2019.12.013

    Article  CAS  PubMed  Google Scholar 

  • Andler R, Steinbüchel A (2017) A simple, rapid and cost-effective process for production of latex clearing protein to produce oligoisoprene molecules. J Biotechnol 241:184–192. https://doi.org/10.1016/j.jbiotec.2016.12.008

    Article  CAS  PubMed  Google Scholar 

  • Andler R, Altenhoff AL, Mäsing F, Steinbüchel A (2018) In vitro studies on the degradation of poly(cis-1,4-isoprene). Biotechnol Prog 34:890–899. https://doi.org/10.1002/btpr.2631

    Article  CAS  PubMed  Google Scholar 

  • Arenskötter M, Baumeister D, Berekaa MM, Pötter G, Kroppenstedt RM, Linos A, Steinbüchel A (2001) Taxonomic characterization of two rubber degrading bacteria belonging to the species Gordonia polyisoprenivorans and analysis of hyper variable regions of 16S rDNA sequences. FEMS Microbiol Lett 205(2):277–282. https://doi.org/10.1111/j.1574-6968.2001.tb10961.x

    Article  PubMed  Google Scholar 

  • Berekaa MM, Linos A, Reichelt R, Keller U, Steinbüchel A (2000) Effect of pretreatment of rubber material on its biodegradability by various rubber degrading bacteria. FEMS Microbiol Lett 182:199–206

    Article  Google Scholar 

  • Birke J, Röther W, Jendrossek D (2015) Latex clearing protein (Lcp) of Streptomyces sp. strain K30 is a b-type cytochrome and differs from rubber oxygenase A (RoxA) in its biophysical properties. Appl Environ Microbiol 81:3793–3799. https://doi.org/10.1128/AEM.00275-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birke J, Röther W, Jendrossek D (2017) RoxB is a novel type of rubber oxygenase that combines properties of rubber oxygenase RoxA and latex clearing protein (Lcp). Appl Environ Microbiol 83:e00721-e1717. https://doi.org/10.1128/AEM.00721-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braaz R, Fischer P, Jendrossek D (2004) Novel type of heme-dependent oxygenase catalysis oxidative cleavage of rubber (poly-cis-1,4-isoprene). Appl Environ Microbiol 70:7388–7395. https://doi.org/10.1128/AEM.70.12.7388-7395.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Bröker D, Dietz D, Arenskötter M, Steinbüchel A (2008) The genomes of the non-clear-zone-forming and natural- rubber-degrading species Gordonia polyisoprenivorans and Gordonia westfalica harbor genes expressing Lcp activity in Streptomyces strains. Appl Environ Microbiol 74:2288–2297. https://doi.org/10.1128/AEM.02145-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao W (2007) Study on properties of recycled tire rubber modified asphalt mixtures using dry process. Constr Build Mater 21:1011–1015

    Article  Google Scholar 

  • Christiansson M, Stenberg B, Holst O (2000) Toxic additives – a problem for microbial waste rubber desulphurisation. Resour Environ Biotechnol 3(1):11–21

    CAS  Google Scholar 

  • Conesa JA, Martin-Gullon I, Font R (2004) Complete study of the pyrolysis and gasification of scarp tires in a pilot plant reactor. Environ Sci Technol 38:3189–3194

    Article  CAS  Google Scholar 

  • Dierkes WK (2005) Untreated and treated rubber powder. In: de Sadhan K, Isayev A, Khait K (eds) Rubber recycling, 1st edn. CRC Press, Boca Raton, pp 136–160

    Google Scholar 

  • Dizge N, Tansel B (2011) Multiparametric investigation of competitive and noncompetitive sorption characteristics of SMP fractions (carbohydrate and protein) on activated carbon. J Hazard Mater 185:996–1004. https://doi.org/10.1016/j.jhazmat.2010.10.004

    Article  CAS  PubMed  Google Scholar 

  • Hambsch N, Schmitt G, Jendrossek D (2010) Development of a homologous expression system for rubber oxygenase RoxA from Xanthomoas sp.. J Appl Microbiol 109:1067–1075

    Article  CAS  Google Scholar 

  • Hiessl S, Schuldes J, Thürmer A, Halbsguth T, Bröker D, Angelov A, Liebl W, Daniel R, Steinbüchel A (2012) Involvement of two latex-clearing proteins during rubber degradation and insights into the subsequent degradation pathway revealed by the genome sequence of Gordonia polyisoprenivorans Strain VH2. Appl Environ Microbiol 78:2874–2887

    Article  CAS  Google Scholar 

  • Hiessl S, Böse D, Oetermann S, Eggers J, Pietruszka J, Steinbüchel A (2014) Latex clearing protein – an oxygenase cleaving poly(cis-1,4-isoprene) rubber at the cis double bonds. Appl Environ Microbiol 80:5231–5240

    Article  Google Scholar 

  • Holst O, Stenberg B, Christiansson M (1998) Biotechnological possibilities for waste tyre rubber treatment. Biodegradation 9:301–310

    Article  CAS  Google Scholar 

  • Huang Y, Bird RN, Heidrich O (2007) A review of use of recycled solid waste materials in asphalt pavements. Resour Conserv Recy 52:58–73

    Article  Google Scholar 

  • Ibrahim E, Arenskötter M, Luftmann H, Steinbüchel A (2006) Identification of poly(cis-1,4-isoprene) degradation intermediates during growth of moderately thermophilic actinomycetes on rubber and cloning of a functional lcp homologue from Nocardia farcinica strain E1. Appl Environ Microbiol 72:3375–3382. https://doi.org/10.1128/AEM.72.5.3375.3382.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jendrossek D, Birke J (2019) Rubber oxygenases. Appl Microbiol Biotechnol 103:125–142. https://doi.org/10.1007/s00253-018-9453-z

    Article  CAS  PubMed  Google Scholar 

  • Linos A, Steinbüchel A (1998) Microbial degradation of natural and synthetic rubbers by novel bacteria belonging to the genus Gordona. Kautsch Gummi Kunstst 51:496–499

    CAS  Google Scholar 

  • Linos A, Steinbüchel A, Spröer C, Kroppenstead RM (1999) Gordonia polyisoprenivorans sp. nov., a rubber-degrading actinomycete isolated from an automobile tire. Int J Syst Bacteriol 49:1785–1791

    Article  CAS  Google Scholar 

  • Myhre M, MacKillop DA (2002) Rubber recycling. Rubber Chem Technol 75:429–474

    Article  CAS  Google Scholar 

  • Myhre M, Saiwari S, Dierkes W, Noordermeer J (2012) Rubber recycling: chemistry, processing and applications. Rubber Chem Technol 85(3):408–449

    Article  CAS  Google Scholar 

  • Naik TR, Singh SS (1991) Utilization of discarded tires as construction materials for transportation facilities. Report No CBU-1991-02, UWM Center for Byproducts Utilization. University of Wisconsin-Milwaukee, Milwaukee

  • Navarro FJ, Partal P, Martinez-Boza FJ, Gallegos C (2007) Influence of processing conditions on the rheological behavior of crumb tire rubber-modified bitumen. J Appl Polym Sci 104:1683–1691

    Article  CAS  Google Scholar 

  • Rajan V (2005) Devulcanisation of NR based latex products for tire applications: Comparative investigation of different vulcanization agents in terms of efficiency. Dissertation. University of Twente, Enschede, Netherlands

  • Rodriguez IM, Laresgoiti MF, Cabrero MA, Torres A, Chomon MJ, Caballero B (2001) Pyrolysis of scrap tires. Fuel Process Technol 72:9–22

    Article  CAS  Google Scholar 

  • Rose K, Tenberge KB, Steinbüchel A (2005) Identification and characterization of genes from Streptomyces strain K30 responsible for clear zone formation on natural rubber latex and poly(cis-1,4-isoprene) rubber degradation. Biomacromol 6:180–188. https://doi.org/10.1021/bm0496110

    Article  CAS  Google Scholar 

  • Röther W, Birke J, Grond S, Beltran JM, Jendrossek D (2017) Production of functionalized oligo-isoprenoids by enzymatic cleavage of rubber. Microb Biotechnol 43:1238–1433. https://doi.org/10.1111/1751-7915.12748

    Article  CAS  Google Scholar 

  • Sato S, Honda Y, Kuwahara M, Watanabe T (2003) Degradation of vulcanized and nonvulcanizes polyisoprene rubbers by lipid peroxidation catalyzed by oxidative enzymes and transition metals. Biomacromol 4:321–329

    Article  CAS  Google Scholar 

  • Schmitt G, Seiffert G, Kroneck PMH, Braaz R, Jendrossek D (2010) Spectroscopic properties of rubber oxygenase RoxA from Xanthomonas sp., a new type of dihaem dioxygenase. Microbiol-SGM 156:2537–2548

    Article  CAS  Google Scholar 

  • Sienkiewicz M, Kucinska-Lipka J, Janik H, Balas A (2012) Progress in used tyres management in the European Union: a review. Waste Manage 32:1742–1751

    Article  CAS  Google Scholar 

  • Silva KCG, Amaral TN, Junqueira LA, de Oliveira LN, de Resende JV (2017) Adsorption of protein on activated carbon used in the filtration of mucilage derived from Pereskia aculeata Miller. S Afr J Chem Eng 23:42–49. https://doi.org/10.1016/j.sajce.2017.01.003

    Article  Google Scholar 

  • Stone MT, Kozlov M (2014) Separating proteins with activated carbon. Langmuir 30(27):8046–8055. https://doi.org/10.1021/la501005s

    Article  CAS  PubMed  Google Scholar 

  • Tsuchii A, Takeda K (1990) Rubber-degrading enzyme from a bacterial culture. Appl Environ Microbiol 56:269–274

    Article  CAS  Google Scholar 

  • Worldwide consumption of natural and synthetic rubber in the years 1990 to 2016, https://de.statista.com/statistik/daten/studie/200677/umfrage/weltweiter-verbrauch-von-natur-und-synthetischem-kautschuk-seit-1990/. Accessed 10 May 2019

  • Xiao F, Amirkhanian SN (2010) Laboratory investigation of utilization high percentage of RAR in rubberized asphalt mixture. Mater Struct 43:223–233

    Article  CAS  Google Scholar 

  • Zabaniotou AA, Stavropoulos G (2003) Pyrolysis of used automobile tires and residual char utilization. J Anal Appl Pyrol 70:711–722

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We want to thank the companies Vibracoustic AG and Freudenberg Technology Innovation SE & Co. KG for providing rubber waste material, as well as for performing the ATR-IR analysis. Moreover, we were thankful for financial support and the lively exchange of knowhow within this cooperative project.

Funding

This work was supported by Vibracoustic AG and Freudenberg Technology Innovation SE & Co. KG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Steinbüchel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altenhoff, AL., Thierbach, S. & Steinbüchel, A. In vitro studies on the degradation of common rubber waste material with the latex clearing protein (Lcp1VH2) of Gordonia polyisoprenivorans VH2. Biodegradation 32, 113–125 (2021). https://doi.org/10.1007/s10532-020-09920-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-020-09920-z

Keywords

Navigation