Skip to main content
Log in

Visualisation of the mode of action of a biological control agent, Aureobasidium pullulans (strain YBCA5) against Pseudomonas syringae pv. actinidiae biovar 3 on the kiwifruit phylloplane

  • Original Paper
  • Published:
Australasian Plant Pathology Aims and scope Submit manuscript

Abstract

The bio-bactericide YBCA5 is a strain of Aureobasidium pullulans (de Bary) G. Arnaud, which mitigates the leaf spot symptoms of bacterial canker in kiwifruit caused by Pseudomonas syringae pv. actinidiae (Psa) biovar 3. Using scanning electron microscopy (SEM) this paper explores the mode of action of YBCA5 against Psa by visualising the interactions between the two microorganisms in planta. Time course studies were conducted by applying the abaxial surface of kiwifruit leaves (Actinidia chinensis var. deliciosa ‘Hayward’) with either YBCA5 or Psa separately and the two microorganisms in combination. SEM revealed that blastospores of YBCA5 occasionally lodged inside the outer cavity of the stomata and commenced multiplying (budding) within 7 days after application. Within 10–14 days, mycelium was observed extending across the phylloplane. On leaves applied with both YBCA5 and Psa, the two microorganisms could be differentiated based on differences in their size with Psa cells measuring approximately a quarter of the length of the YBCA5 blastospores (1.6 ± 0.02 µm and 6.1 ± 0.2 µm, respectively). The Psa cells adhered to the YBCA5 blastospores and hyphae. At 7 days after inoculation, Psa cells adjacent to YBCA5 were deflated with their typical rod-shape distorted and appeared unable to infect the stomata. On average, distorted Psa cells were 20% shorter and 30% wider compared with those on leaves without YBCA5. At 10 days after inoculation, the Psa cells were appressed against the phylloplane and appeared to have collapsed. We hypothesise that this phenomenon is associated with extracellular substances exuded by YBCA5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adikaram NKB, Joyce DC, Terry LA (2002) Biocontrol activity and induced resistance as a possible mode of action for Aureobasidium pullulans against grey mould of strawberry fruit. Australas Plant Path 31:223–229

    Google Scholar 

  • Andrews JH, Harris RF, Spear RN, Lau GW, Nordheim E (1994) Morphogenesis and adhesion of Aureobasidium pullulans. Can J Microbiol 40:6–17

    CAS  Google Scholar 

  • Andrews JH, Spear RN, Nordheim E (2002) Population biology of Aureobasidium pullulans on apple leaf surfaces. Can J Microbiol 48:500–513

    CAS  PubMed  Google Scholar 

  • Bucci V, Donati G, Pradolesi G (2016) Evaluation of pre-flowering applications of forchlorfenuron (Sitofex®) on kiwifruit and effects against Pseudomonas syringae pv. actinidiae. Atti Gior Fitopatolog 2:315–322

    Google Scholar 

  • CABI (2019) Pseudomonas syringae pv. actinidiae (bacterial canker of kiwifruit). https://www.cabi.org/isc/datasheet/45002. Accessed July 2020.

  • Castoria R, De Curtis F, Lima G, Caputo L, Pacifico S, De Cicco V (2001) Aureobasidium pullulans (LS-30) an antagonist of postharvest pathogens of fruits: study on its modes of action. Postharvest Biol Tec 22:7–17

    Google Scholar 

  • Chapman JR, Taylor RK, Weir BS, Romberg MK, Vanneste JL, Luck J, Alexander BJR (2012) Phylogenetic relationships among global populations of Pseudomonas syringae pv. actinidiae. Phytopathology 102(11): 1034–1044.

  • Chlebowska-Śmigiel A, Gniewosz M (2009) Effect of pullulan coating on inhibition of chosen microorganisms’ growth. Acta Sci Pol Technol Aliment 8(3):37–46

    Google Scholar 

  • Cooke WB (1959) An ecological life history of Aureobasidium pullulans (de Bary) Arnaud. Mycopathol Mycol Appl 12:1–45

    CAS  PubMed  Google Scholar 

  • Di Francesco A, Ugolini L, Lazzeri L, Mari M (2014) Production of volatile organic compounds by Aureobasidium pullulans as a potential mechanism of action against postharvest fruit pathogens. Biol Control 81:8–14

    Google Scholar 

  • Di Francesco A, Martini C, Mari M (2016) Biological control of postharvest diseases by microbial antagonists: how many mechanisms of action? Eur J Plant Pathol 145:711–717

    Google Scholar 

  • Donati I, Buriani G, Cellini A, Mauri S, Costa G, Spinelli F (2014) New insights on the bacterial canker of kiwifruit (Pseudomonas syringae pv. actinidiae). J Berry Res 4:53–67

    Google Scholar 

  • Donati I, Cellini A, Buriani G, Mauri S, Kay C, Tacconi G, Spinelli F (2018) Pathways of flower infection and pollen-mediated dispersion of Pseudomonas syringae pv. actinidiae, the causal agent of kiwifruit bacterial canker. Hort Res 5:56. https://doi.org/10.1038/s41438-018-0058-6

  • Donati I, Cellini A, Sangiorgio D, Vanneste JL, Scortichini M, Balestra GM, Spinelli F (2020) Pseudomonas syringae pv. actinidiae: ecology, infection dynamics and disease epidemiology. Microbiol Ecol 80:80–102

    Google Scholar 

  • Donot F, Fontana A, Baccou JC, Schorr-Galindo S (2012) Microbial exopolysaccharides: Main examples of synthesis, excretion, genetics and extraction. Carbohydr Polym 87(2):951–962

    CAS  Google Scholar 

  • Dorr J, Hurek T, Reinhold-Hurek B (1998) Type IV pili are involved in plant-microbe and fungus-microbe interactions. Mol Microbiol 30:7–17

    CAS  PubMed  Google Scholar 

  • Droby S, Romanazzi G, Tonutti P (2016) Alternative approaches to synthetic fungicides to manage postharvest decay of fruit and vegetables: Needs and purposes of a special issue. Postharvest Biol Tec 122:1–2

    Google Scholar 

  • European Food Safety Authority (EFSA) (2011) Potential inclusion of the microorganism Aureobasidium pullulans strains DSM 14940 and DSM 14941 in Annex IV of Regulation (EC) No 396/2005. EFSA J 9(11):2435–2460. https://doi.org/10.2903/j.efsa.2011.2435

  • Everett KR, Taylor RK, Romberg MK, Rees-George J, Fullerton RA, Vanneste JL, Manning MA (2011) First report of Pseudomonas syringae pv. actinidiae causing kiwifruit bacterial canker in New Zealand. Australas Plant Dis Notes 6:67–71

    Google Scholar 

  • Ferraz LP, Cunha T, Silva AC, Kupper KC (2016) Biocontrol ability and putative mode of action of yeasts against Geotrichum citri-aurantii in citrus fruit. Microbiol Res 188:72–79

    PubMed  Google Scholar 

  • Freimoser FM, Rueda-Mejia MP, Tilocca B, Migheli Q (2019) Biocontrol yeasts: mechanisms and applications. World J Microbiol Biotechnol 35:154. https://doi.org/10.1007/s11274-019-2728-4

    Article  PubMed  PubMed Central  Google Scholar 

  • FreshFacts (2019) New Zealand horticulture. https://www.freshfacts.co.nz. Accessed Dec 2020

  • Gao X, Huang Q, Zhao Z, Han Q, Ke X, Qin H, Huang L (2016) Studies on the infection, colonization, and movement of Pseudomonas syringae pv. actinidiae in kiwifruit tissues using a GFPuv-labeled strain. PLoS One 11(3): e0151169. https://doi.org/10.1371/journal.pone.0151169

  • Gilbón A, Huitrón C, Faria FG, Ulloa M (1986) Scanning electron microscopy of a true cellulolytic strain of Aureobasidium grown on crystalline cellulose. Mycologia 78(5):804–809

    Google Scholar 

  • Gniewosz M, Duszkiewicz-Reinhard W (2008) Comparative studies on pullulan synthesis, melanin synthesis and morphology of white mutant Aureobasidium pullulans B-1 and parent strain A.p.-3. Carbohydr Polym 72:431–438

    CAS  Google Scholar 

  • Gould EM, Black MZ, Clark G, Tanner DJ, Benge J (2015) Tools for managing the kiwifruit bacterial canker disease Pseudomonas syringae pv actinidiae (Psa). Acta Hortic 1105:39–46

    Google Scholar 

  • Hogan DA, Kolter R (2002) Pseudomonas-Candida interactions: An ecological role for virulence factors. Science 296:2229–2232

    CAS  PubMed  Google Scholar 

  • Hogan DA, Wargo MJ, Beck N (2007) Bacterial biofilms on fungal surfaces. In: Kjelleberg S, Givskov M (eds) The biofilm mode of life – mechanisms and adaptations. Horizon Bioscience, Norfolk, UK, pp 236–245

    Google Scholar 

  • de Hoog GS, Yurlova NA (1994) Conidiogenesis, nutritional physiology and taxonomy of Aureobasidium and Hormonema. Anton Leeuw Int J Genet 65:41–54

    Google Scholar 

  • Ippolito A, Ghaouth AE, Wilson CL, Wisniewski M (2000) Control of postharvest decay of apple fruit by Aureobasidium pullulans and induction of defence responses. Postharvest Biol Tec 19(3):265–272

    CAS  Google Scholar 

  • Ishiga T, Sakata N, Nguyen VT et al (2020) Flood inoculation of seedlings on culture medium to study interactions between Pseudomonas syringae pv. actinidiae and kiwifruit. J Gen Plant Pathol 86:257–265. https://doi.org/10.1007/s10327-020-00916-4

    Article  Google Scholar 

  • Janisiewicz WJ, Korsten L (2002) Biological control of postharvest diseases of fruits. Annu Rev Phytopathol 40:411–441

    CAS  PubMed  Google Scholar 

  • de Jong H, Reglinski T, Elmer PAG, Wurms K, Vanneste JL, Guo LF, Alavi M (2019) Integrated use of Aureobasidium pullulans strain CG163 and acibenzolar-S-methyl for management of bacterial canker in kiwifruit. Plants 8(8):287. https://doi.org/10.3390/plants8080287

    Article  CAS  PubMed Central  Google Scholar 

  • Kalantar E, Deopurkar R, Kapadnis B (2006) Antimicrobial activity of indigenous strains of Aureobasidium isolated from Santalum album leaves. Iran J Pharm Res 1:59–64

    Google Scholar 

  • Kiwifruit Vine Health (2020) Psa stats. https://www.kvh.org.nz/vdb/document/103458. Accessed July 2020.

  • Klein MN, Kupper KC (2018) Biofilm production by Aureobasidium pullulans improves biocontrol against sour rot in citrus. Food Microbiol 69:1–10

    CAS  PubMed  Google Scholar 

  • Kocková-Kratochvílová A, Černáková M, Sláviková E (1980) Morphological changes during the life cycle of Aureobasidium pullulans (de Bary) Arnaud. Folia Microbiol (Praha) 25:56–67

    Google Scholar 

  • Leathers TD (2003) Biotechnological production and applications of pullulan. Appl Microbiol Biot 62:468–473

    CAS  Google Scholar 

  • Leben C (1984) Spread of plant pathogenic bacteria with fungal hyphae. Phytopathology 74(8):983–986

    Google Scholar 

  • Liu X, Wang J, Gou P, Mao C, Zhu Z-R, Li H (2007) In vitro inhibition of postharvest pathogens of fruit and control of gray mold of strawberry and green mold of citrus by aureobasidin A. Int J Food Microbiol 119:223–229

    CAS  PubMed  Google Scholar 

  • Liu J, Sui Y, Wisniewski M, Droby S, Liu Y (2013) Review: Utilization of antagonistic yeasts to manage postharvest fungal diseases of fruit. Int J Food Microbiol 167:153–160

    PubMed  Google Scholar 

  • Mauri S, Cellini A, Buriani G, Donati I, Costa G, Spinelli F (2016) Optimization of cultural practices to reduce the development of Pseudomonas syringae pv. actinidiae, causal agent of the bacterial canker of kiwifruit. J Berry Res 6:355–371

    CAS  Google Scholar 

  • Janisiewicz WJ, Tworkoski TJ, Sharer C (2000) Characterizing the mechanism of biological control of postharvest diseases on fruits with a simple method to study competition for nutrients. Phytopathology 90:1196–1200

    CAS  PubMed  Google Scholar 

  • McCann HC, Rikkerink EHA, Bertels F, Fiers M, Lu A, Rees-George J, Andersen MT, Gleave AP, Haubold B, Wohlers MW, Guttman DS, Wang PW, Straub C, Vanneste J, Rainey PB, Templeton MD (2013) Genomic analysis of the kiwifruit pathogen Pseudomonas syringae pv. actinidiae provides insight into the origins of an emergent plant disease. PLoS Pathog 9(7): e1003503. https://doi.org/10.1371/journal.ppat.1003503

  • McCormack PJ, Wildman HG, Jeffries P (1994) Production of antibacterial compounds by phylloplane inhabiting yeasts and yeastlike fungi. Appl Environ Microbiol 60(3):927–931

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCormack PJ, Wildman HG, Jeffries P (1995) The influence of moisture on the suppression of Pseudomonas syringae by Aureobasidium pullulans on an artificial leaf surface. FEMS Microbiol Ecol 16:159–166

    CAS  Google Scholar 

  • McGrath MJ, Andrews JH (2006) Temporal changes in microscale colonization of the phylloplane by Aureobasidium pullulans. Appl Environ Microbiol 72(9):6234–6241

    CAS  PubMed  PubMed Central  Google Scholar 

  • Osińska-Jaroszuk M, Jarosz-Wilkołazka A, Jaroszuk-Ściseł J, Szałapata K, Nowak A, Jaszek M, Ozimek E, Majewska M (2015) Extracellular polysaccharides from Ascomycota and Basidiomycota: production conditions, biochemical characteristics, and biological properties. World J Microbiol Biotechnol 31:1823–1844. https://doi.org/10.1007/s11274-015-1937-8

  • Pechak DG, Crang RE (1977) An analysis of Aureobasidium pullulans developmental stages by means of scanning electron microscopy. Mycologia 69(4):783–792

    Google Scholar 

  • Renzi M, Copini P, Taddei AR, Rossetti A, Gallipoli L, Mazzaglia A, Balestra GM (2012) Bacterial canker on kiwifruit in Italy: anatomical changes in the wood and in the primary infection sites. Phytopathology 102(9):827–840

    PubMed  Google Scholar 

  • Schena L, Franco Nigro F, Pentimone I, Ligorio A, Ippolito A (2003) Control of postharvest rots of sweet cherries and table grapes with endophytic isolates of Aureobasidium pullulans. Postharvest Biol Technol 30:209–220

    Google Scholar 

  • Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. https://doi.org/10.1038/nmeth.2019

  • Scortichini M, Marcelletti S, Ferrante P, Petriccione M, Firrao G (2012) Pseudomonas syringae pv. actinidiae: A re-emerging, multi-faceted, pandemic pathogen. Mol Plant Pathol 13:631–640

    PubMed  PubMed Central  Google Scholar 

  • Setati ME, Jacobson D, Andong U-C, Bauer F (2012) The vineyard yeast microbiome, a mixed model microbial map. PLoS One 7(12):e52609. https://doi.org/10.1371/journal.pone.0052609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh R, Gaur R, Bansal S, Biswas P, Pandey PK, Jamal F, Tiwari S, Gaur MK (2015) Aureobasidium pullulans – an industrial important pullulan producing black yeast. Int J Curr Microbiol Appl Sci 4(10):605–622

    CAS  Google Scholar 

  • Spinelli AF, Donati I, Vanneste J, Costa M, Costa G (2011) Real time monitoring of the interactions between Pseudomonas syringae pv. actinidiae and Actinidia species. Acta Hortic 913:461–466

    Google Scholar 

  • Sutherland P, Hallett I, Jones M (2012) Research Update: Pseudomonas syringae pv. actinidiae (Psa): Pretty pictures of a gruesome subject. https://www.plantandfood.co.nz/file/psa-pretty-pictures.pdf

  • Tahir J, Gardiner SE, Bassett H, Chagné D, Deng CH, Gea L (2018) Tolerance to Pseudomonas syringae pv. actinidiae in a kiwifruit breeding parent is conferred by multiple loci. Acta Hortic 1203:67–70

    Google Scholar 

  • Temple TN, Thompson EC, Uppala S, Granatstein D, Johnson KB (2020) Floral colonization dynamics and specificity of Aureobasidium pullulans strains used to suppress fire blight of pome fruit. Plant Dis 104:121–128

    CAS  PubMed  Google Scholar 

  • Tyson JL, Horne IJ, Curtis CL, Blackmore A, Manning MA (2015) Influence of leaf age on infection of Actinidia species by Pseudomonas syringae pv. actinidiae. N Z Plant Prot 68:328–331

    Google Scholar 

  • UPL (2020) Aureo Gold. https://www.upl-ltd.com/nz/product-details/aureo-gold. Accessed July 2020.

  • Vadkertiová R, Molnárová J, Vránová D, Sláviková E (2012) Yeasts and yeast-like organisms associated with fruits and blossoms of different fruit trees. Can J Microbiol 58:1344–1352

    PubMed  Google Scholar 

  • Vanneste JL (2017) The scientific, economic, and social impacts of the New Zealand outbreak of bacterial canker of kiwifruit (Pseudomonas syringae pv. actinidiae). Annu Rev Phytopathol 55:377–399

    CAS  PubMed  Google Scholar 

  • VSN International (2011) Genstat for Windows 19th Edition. VSN International, Hemel Hempstead, UK. https://genstat.kb.vsni.co.uk/

  • Wachowska U, Głowackab K, Mikołajczyka W, Kucharskaa K (2016) Biofilm of Aureobasidium pullulans var. pullulans on winter wheat kernels and its effect on other microorganisms. Microbiology 85(5): 523–530.

  • Wang W, Chi Z, Liu G, Buzdar MA, Chi Z, Gu Q (2009) Chemical and biological characterization of siderophore produced by the marine-derived Aureobasidium pullulans HN6.2 and its antibacterial activity. Biometals 22:965–972

    CAS  PubMed  Google Scholar 

  • Wicaksono WA, Jones EE, Casonato S, Monk J, Ridgway HJ (2018) Biological control of Pseudomonas syringae pv. actinidiae (Psa), the causal agent of bacterial canker of kiwifruit, using endophytic bacteria recovered from a medicinal plant. Biol Control 116:103–112. https://doi.org/10.1016/j.biocontrol.2017.03.003

  • Zajc J, Černoša A, Di Francesco A, Castoria R, De Curtis F, Lima G, Badri H, Jijakli H, Ippolito A, GostinČar C, Zalar P, Gunde-Cimerman N, Janisiewicz WJ (2020. Characterization of Aureobasidium pullulans isolates selected as biocontrol agents against fruit decay pathogens. Fungal Genet Biol 10 (163). https://doi.org/10.35248/2165-8056.20.10.163

  • Zalar P, Gostinčar C, de Hoog GS, Uršič V, Sudhadham M, Gunde-Cimerman N (2008) Redefinition of Aureobasidium pullulans and its varieties. Stud Mycol 61:21–38

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Spadaro D, Valente S, Garibaldi A, Gullino ML (2012) Cloning, characterization, expression and antifungal activity of an alkaline serine protease of Aureobasidium pullulans PL5 involved in the biological control of postharvest pathogens. Int J Food Microbiol 153:453–464

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ms Ria Rebstock and Dr Beccy Ganley, Plant & Food Research, for feedback on the manuscript and Ms Lindy Guo, Plant & Food Research, for statistical assistance. Ms Janine Johnson, Plant & Food Research, provided helpful editorial comments. We greatly appreciate the constructive review by an anonymous referee. We are grateful to Dr Maureen O’Callaghan (AgResearch Programme Leader) for supporting this project. This research was funded by the New Zealand Ministry of Business, Innovation and Employment (MBIE) programme ‘Next Generation Biopesticides’ (Contract number C10X1310).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: P.A.R., P.W.S. and P.A.G.E.; Methodology: P.A.R. and P.W.S.; Formal analysis and investigation: P.W.S. and P.A.R.; Writing-original draft preparation: P.A.R.; Writing-review and editing: P.A.R., P.W.S. and P.A.G.E.; Funding acquisition: P.A.G.E.

Corresponding author

Correspondence to P. A. Rheinländer.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest, neither financial, commercial nor personal, that could be construed to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

13313_2021_783_MOESM1_ESM.jpg

Supplementary file1. Scanning electron micrographs of fibrillary deposits (arrows) observed associated with Pseudomonas syringae pv. actinidiae biovar 3 (Psa) and YBCA5 (a strain of Aureobasidium pullulans (de Bary) G. Arnaud) on the abaxial phylloplane of Actinidia chinensis var. deliciosa ‘Hayward’. (A) Psa cells on a leaf inoculated with Psa only, (B) Psa cells adhering to a hypha of YBCA5 on a leaf applied with both organisms, (C) hyphae of YBCA5, and (D) blastospore of YBCA5. (JPG 2111 KB)

13313_2021_783_MOESM2_ESM.jpg

Supplementary file2 (A) Scanning electron micrograph (SEM) of the abaxial phylloplane of Actinidia chinensis var. deliciosa ‘Hayward’ 7 days after application with YBCA5 (a strain of Aureobasidium pullulans (de Bary) G. Arnaud) and Pseudomonas syringae pv. actinidiae biovar 3 (Psa). Blastospores of YBCA5 (black arrows) wedged in a crevice of the phylloplane and isolated from Psa cells. In areas with no adjacent YBCA5 the Psa cells (white arrow) were attracted to and able to infect the stomata. (B) SEM of the epidermal cells of the abaxial phylloplane of an untreated control leaf of A. chinensis var. deliciosa ‘Hayward’. No changes of the epidermis were recorded between treated leaves and the untreated controls. (JPG 1036 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rheinländer, P.A., Sutherland, P.W. & Elmer, P.A.G. Visualisation of the mode of action of a biological control agent, Aureobasidium pullulans (strain YBCA5) against Pseudomonas syringae pv. actinidiae biovar 3 on the kiwifruit phylloplane. Australasian Plant Pathol. 50, 379–388 (2021). https://doi.org/10.1007/s13313-021-00783-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13313-021-00783-3

Keywords

Navigation