Skip to main content

Advertisement

Log in

Energy Absorption Characteristics of a Novel Asymmetric and Rotatable Re-entrant Honeycomb Structure

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

Based on the symmetric re-entrant honeycomb (S-RH) structure with negative Poisson’s ratios, a novel asymmetric and rotatable re-entrant honeycomb (AR-RH) structure was proposed. Both the S-RH structure and AR-RH structure were produced by the 3D printing technology. Through experimental test and finite element simulation, the deformation mechanism and energy absorption characteristics of the AR-RH structure and the S-RH structure with negative Poisson’s ratios at different impact velocities were compared. The experimental test and finite element simulation results show that the novel AR-RH structure with negative Poisson’s ratios has stronger energy absorption capacity than the S-RH structure, and it has been verified that the rotatability of AR-RH can indeed absorb energy. Furthermore, the degree of asymmetry of the AR-RH structure was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Fu M-H, Chen Y, Hu L-L. A novel auxetic honeycomb with enhanced in-plane stiffness and buckling strength. Compos Struct. 2017;160:574–85.

    Article  Google Scholar 

  2. Zhang X, Ding H, An L, Wang X. Numerical investigation on dynamic crushing behavior of auxetic honeycombs with various cell-wall angles. Adv Mech Eng. 2015;7(2):679678.

    Article  Google Scholar 

  3. Huang J, Zhang Q, Scarpa F, Liu Y, Leng J. In-plane elasticity of a novel auxetic honeycomb design. Compos B Eng. 2017;110:72–82.

    Article  Google Scholar 

  4. Imbalzano G, Tran P, Ngo TD, Lee PV. A numerical study of auxetic composite panels under blast loadings. Compos Struct. 2016;135:339–52.

    Article  Google Scholar 

  5. Boldrin L, Hummel S, Scarpa F, Di Maio D, Lira C, Ruzzene M, et al. Dynamic behaviour of auxetic gradient composite hexagonal honeycombs. Compos Struct. 2016;149:114–24.

    Article  Google Scholar 

  6. Liu Y, Hu H. A review on auxetic structures and polymeric materials. Sci Res Essays. 2010;5(10):1052–63.

    Google Scholar 

  7. Yang W, Li Z-M, Shi W, Xie B-H, Yang M-B. Review on auxetic materials. J Mater Sci. 2004;39(10):3269–79.

    Article  Google Scholar 

  8. Evans KE. Auxetic polymers: a new range of materials. Endeavour. 1991;15(4):170–4.

    Article  Google Scholar 

  9. Thill C, Etches J, Bond I, Potter K, Weaver P. Morphing skins. Aeronaut J. 2008;112(1129):117–39.

    Article  Google Scholar 

  10. Martin J, Heyder-Bruckner JJ, Remillat C, Scarpa F, Potter K, Ruzzene M. The hexachiral prismatic wingbox concept. Physica Status Solidi (b). 2008;245(3):570–7.

    Article  Google Scholar 

  11. Masters I, Evans K. Models for the elastic deformation of honeycombs. Compos Struct. 1996;35(4):403–22.

    Article  Google Scholar 

  12. Spadoni A, Ruzzene M, Scarpa F. Dynamic response of chiral truss-core assemblies. J Intell Mater Syst Struct. 2006;17(11):941–52.

    Article  Google Scholar 

  13. Hassan M, Scarpa F, Ruzzene M, Mohammed N. Smart shape memory alloy chiral honeycomb. Mater Sci Eng A. 2008;481:654–7.

    Article  Google Scholar 

  14. Bornengo D, Scarpa F, Remillat C. Evaluation of hexagonal chiral structure for morphing airfoil concept. Proc Inst Mech Eng Part G J Aerosp Eng. 2005;219(3):185–92.

    Article  Google Scholar 

  15. Scarpa F, Burriesci G, Smith F, Chambers B. Mechanical and electromagnetic behaviour of auxetic honeycomb structures. Aeronaut J. 2003;107(1069):175.

    Google Scholar 

  16. Frost HJ, Ashby MF. Deformation mechanism maps: the plasticity and creep of metals and ceramics. Oxford: Pergamon Press; 1982.

    Google Scholar 

  17. Choi J, Lakes R. Analysis of elastic modulus of conventional foams and of re-entrant foam materials with a negative Poisson’s ratio. Int J Mech Sci. 1995;37(1):51–9.

    Article  Google Scholar 

  18. Zhang Z, Hu H, Xu B. An elastic analysis of a honeycomb structure with negative Poisson’s ratio. Smart Mater Struct. 2013;22(8):084006.

    Article  Google Scholar 

  19. Zied K, Osman M, Elmahdy T. Enhancement of the in-plane stiffness of the hexagonal re-entrant auxetic honeycomb cores. Physica Status Solidi (b). 2015;252(12):2685–92.

    Article  Google Scholar 

  20. Zhang X-C, Liu Y, Li N. In-plane dynamic crushing of honeycombs with negative Poisson’s ratio effects. Explos Shock Waves. 2012;32(5):475–82.

    Google Scholar 

  21. Hou X, Deng Z, Zhang K. Dynamic crushing strength analysis of auxetic honeycombs. Acta Mech Solida Sin. 2016;29(5):490–501.

    Article  Google Scholar 

  22. Lu Z, Zhao Y. A two-dimensional multi-cell material mechanics model with negative Poisson’s ratio effect. J Beijing Univ Aeronaut Astronaut. 2006;32(05):594–7.

    Google Scholar 

  23. Shi Q. Performance characterization and optimum design of negative Poisson ratio honeycomb core. Doctoral dissertation, Harbin Institute of Technology, 2014.

  24. Fan X, Yin X, Tao Y. Mechanical behavior and energy absorption of graded honeycomb materials under out-of-plane dynamic compression. Guti Lixue Xuebao/Acta Mech Sol Sin. 2015;36:114–22.

    Google Scholar 

  25. Panda B, Leite M, Biswal BB, Niu X, Garg A. Experimental and numerical modelling of mechanical properties of 3D printed honeycomb structures. Measurement. 2018;116:495–506.

    Article  Google Scholar 

  26. Wang Z. Recent advances in novel metallic honeycomb structure. Compos B Eng. 2019;166:731–41.

    Article  Google Scholar 

  27. Testing ASf, Materials, editors. D638-08: Standard Test Method for Tensile Properties of Plastics;2008. ASTM.

  28. Gibson LJ, Ashby MF. Cellular solids: structure and properties. Cambridge: Cambridge University Press; 1999.

    MATH  Google Scholar 

  29. Tan PJ, Reid SR, Harrigan JJ, Zou Z, Li S. Dynamic compressive strength properties of aluminium foams. Part I–experimental data and observations. J Mech Phys Solids. 2005;53(10):2174–205.

    Article  Google Scholar 

  30. Zhu H, Thorpe S, Windle A. The effect of cell irregularity on the high strain compression of 2D Voronoi honeycombs. Int J Solids Struct. 2006;43(5):1061–78.

    Article  Google Scholar 

  31. Zhu HX, Mills N. The in-plane non-linear compression of regular honeycombs. Int J Solids Struct. 2000;37(13):1931–49.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the State Key for Strength and Vibration of Mechanical Structures of Xi’an Jiaotong University (No. SV2018-KF-32) and the Natural Science Foundation of Guangdong Province of China (2020A1515011064).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiachu Xu or Shiqing Huang.

Ethics declarations

Data availability statement

All data, models and code generated or used during the study appear in the submitted article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, H., Xu, J., Cen, S. et al. Energy Absorption Characteristics of a Novel Asymmetric and Rotatable Re-entrant Honeycomb Structure. Acta Mech. Solida Sin. 34, 550–560 (2021). https://doi.org/10.1007/s10338-021-00219-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-021-00219-x

Keywords

Navigation