skip to main content
research-article

A harmonic balance approach for designing compliant mechanical systems with nonlinear periodic motions

Published:27 November 2020Publication History
Skip Abstract Section

Abstract

We present a computational method for designing compliant mechanical systems that exhibit large-amplitude oscillations. The technical core of our approach is an optimization-driven design tool that combines sensitivity analysis for optimization with the Harmonic Balance Method for simulation. By establishing dynamic force equilibrium in the frequency domain, our formulation avoids the major limitations of existing alternatives: it handles nonlinear forces, side-steps any transient process, and automatically produces periodic solutions. We introduce design objectives for amplitude optimization and trajectory matching that enable intuitive high-level authoring of large-amplitude motions. Our method can be applied to many types of mechanical systems, which we demonstrate through a set of examples involving compliant mechanisms, flexible rod networks, elastic thin shell models, and multi-material solids. We further validate our approach by manufacturing and evaluating several physical prototypes.

Skip Supplemental Material Section

Supplemental Material

a191-tang.mp4

mp4

272.9 MB

3414685.3417765.mp4

mp4

280.4 MB

References

  1. Andrew Allen and Nikunj Raghuvanshi. 2015. Aerophones in Flatland: Interactive Wave Simulation of Wind Instruments. ACM Trans. Graph. 34, 4, Article 134 (July 2015), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Moritz Bächer, Stelian Coros, and Bernhard Thomaszewski. 2015. LinkEdit: Interactive Linkage Editing Using Symbolic Kinematics. ACM Trans. Graph. 34, 4, Article 99 (July 2015), 8 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Moritz Bächer, Emily Whiting, Bernd Bickel, and Olga Sorkine-Hornung. 2014. Spin-It: Optimizing Moment of Inertia for Spinnable Objects. ACM Trans. Graph. 33, 4, Article 96 (July 2014), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. J. W. Bandler, R. M. Biernacki, and S. H. Chen. 1992. Harmonic balance simulation and optimization of nonlinear circuits. In [Proceedings] 1992 IEEE International Symposium on Circuits and Systems, Vol. 1. 85--88 vol.1. Google ScholarGoogle ScholarCross RefCross Ref
  5. Jernej Barbič and Doug L. James. 2005. Real-Time Subspace Integration for St. Venant-Kirchhoff Deformable Models. ACM Trans. Graph. 24, 3 (July 2005), 982--990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Miklós Bergou, Max Wardetzky, Stephen Robinson, Basile Audoly, and Eitan Grinspun. 2008. Discrete Elastic Rods. In ACM SIGGRAPH 2008 Papers (Los Angeles, California) (SIGGRAPH '08). Association for Computing Machinery, New York, NY, USA, Article 63, 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Gaurav Bharaj, David I. W. Levin, James Tompkin, Yun Fei, Hanspeter Pfister, Wojciech Matusik, and Changxi Zheng. 2015. Computational Design of Metallophone Contact Sounds. ACM Trans. Graph. 34, 6, Article 223 (Oct. 2015), 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Nicolas Bonneel, George Drettakis, Nicolas Tsingos, Isabelle Viaud-Delmon, and Doug James. 2008. Fast Modal Sounds with Scalable Frequency-Domain Synthesis. ACM Trans. Graph. 27, 3 (Aug. 2008), 1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Richard H Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. 1995. A limited memory algorithm for bound constrained optimization. SIAM Journal on scientific computing 16, 5 (1995), 1190--1208.Google ScholarGoogle Scholar
  10. TM Cameron and JH Griffin. 1989. An alternating frequency/time domain method for calculating the steady-state response of nonlinear dynamic systems. Journal of applied mechanics 56, 1 (1989), 149--154.Google ScholarGoogle ScholarCross RefCross Ref
  11. Duygu Ceylan, Wilmot Li, Niloy J. Mitra, Maneesh Agrawala, and Mark Pauly. 2013. Designing and Fabricating Mechanical Automata from Mocap Sequences. ACM Trans. Graph. 32, 6, Article 186 (Nov. 2013), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Jeffrey N Chadwick, Steven S An, and Doug L James. 2009. Harmonic shells: a practical nonlinear sound model for near-rigid thin shells. ACM Trans. Graph. 28, 5 (2009), 119--1.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Desai Chen, David I. W. Levin, Wojciech Matusik, and Danny M. Kaufman. 2017. Dynamics-Aware Numerical Coarsening for Fabrication Design. ACM Trans. Graph. 36, 4, Article 84 (July 2017), 15 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Gabriel Cirio, Ante Qu, George Drettakis, Eitan Grinspun, and Changxi Zheng. 2018. Multi-scale simulation of nonlinear thin-shell sound with wave turbulence. ACM Transactions on Graphics (TOG) 37, 4 (2018), 110.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Stelian Coros, Bernhard Thomaszewski, Gioacchino Noris, Shinjiro Sueda, Moira Forberg, Robert W. Sumner, Wojciech Matusik, and Bernd Bickel. 2013. Computational Design of Mechanical Characters. ACM Trans. Graph. 32, 4, Article 83 (July 2013), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. S. Cotton, I. M. C. Olaru, M. Bellman, T. van der Ven, J. Godowski, and J. Pratt. 2012. FastRunner: A fast, efficient and robust bipedal robot. Concept and planar simulation. In 2012 IEEE International Conference on Robotics and Automation. 2358--2364.Google ScholarGoogle Scholar
  17. T. Detroux, L. Renson, and G. Kerschen. 2014. The Harmonic Balance Method for Advanced Analysis and Design of Nonlinear Mechanical Systems. In Nonlinear Dynamics, Volume 2, Gaetan Kerschen (Ed.). Springer International Publishing, Cham, 19--34.Google ScholarGoogle Scholar
  18. Suguang Dou and Jakob Søndergaard Jensen. 2015. Optimization of nonlinear structural resonance using the incremental harmonic balance method. Journal of Sound and Vibration 334 (2015), 239--254. Google ScholarGoogle ScholarCross RefCross Ref
  19. Anna Engels-Putzka, Jan Backhaus, and Christian Frey. 2019. Forced Response Sensitivity Analysis Using an Adjoint Harmonic Balance Solver. Journal of Turbomachinery 141, 3 (01 2019). Google ScholarGoogle ScholarCross RefCross Ref
  20. Lawson Fulton, Vismay Modi, David Duvenaud, David I. W. Levin, and Alec Jacobson. 2019. Latent-space Dynamics for Reduced Deformable Simulation. Computer Graphics Forum (2019). Google ScholarGoogle ScholarCross RefCross Ref
  21. Eitan Grinspun, Anil N Hirani, Mathieu Desbrun, and Peter Schröder. 2003. Discrete shells. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation. Eurographics Association, 62--67.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Fabian Hahn, Bernhard Thomaszewski, Stelian Coros, Robert W. Sumner, Forrester Cole, Mark Meyer, Tony DeRose, and Markus Gross. 2014. Subspace Clothing Simulation Using Adaptive Bases. ACM Trans. Graph. 33, 4, Article 105 (July 2014), 9 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Kenneth C. Hall, Kivanc Ekici, Jeffrey P. Thomas, and Earl H. Dowell. 2013. Harmonic balance methods applied to computational fluid dynamics problems. International Journal of Computational Fluid Dynamics 27, 2 (2013), 52--67. arXiv:https://doi.org/10.1080/10618562.2012.742512 Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Klaus Hildebrandt, Christian Schulz, Christoph Von Tycowicz, and Konrad Polthier. 2011. Interactive Surface Modeling Using Modal Analysis. ACM Trans. Graph. 30, 5, Article 119 (Oct. 2011), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Shayan Hoshyari, Hongyi Xu, Espen Knoop, Stelian Coros, and Moritz Bächer. 2019. Vibration-minimizing motion retargeting for robotic characters. ACM Transactions on Graphics (TOG) 38, 4 (2019), 1--14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Gaëtan Kerschen, Maxime Peeters, Jean-Claude Golinval, and Alexander F Vakakis. 2009. Nonlinear normal modes, Part I: A useful framework for the structural dynamicist. Mechanical Systems and Signal Processing 23, 1 (2009), 170--194.Google ScholarGoogle ScholarCross RefCross Ref
  27. Theodore Kim and Doug L. James. 2009. Skipping Steps in Deformable Simulation with Online Model Reduction. ACM Trans. Graph. 28, 5 (Dec. 2009), 1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Malte Krack and Johann Gross. 2019. Harmonic Balance for Nonlinear Vibration Problems. Springer.Google ScholarGoogle Scholar
  29. Malte Krack, Loic Salles, and Fabrice Thouverez. 2017. Vibration prediction of bladed disks coupled by friction joints. Archives of Computational Methods in Engineering 24, 3 (2017), 589--636.Google ScholarGoogle ScholarCross RefCross Ref
  30. Dingzeyu Li, David I. W. Levin, Wojciech Matusik, and Changxi Zheng. 2016. Acoustic Voxels: Computational Optimization of Modular Acoustic Filters. ACM Trans. Graph. 35, 4, Article 88 (July 2016), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Vittorio Megaro, Jonas Zehnder, Moritz Bächer, Stelian Coros, Markus H Gross, and Bernhard Thomaszewski. 2017. A computational design tool for compliant mechanisms. ACM Trans. Graph. 36, 4 (2017), 82--1.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Federico L. Moro, Alexander Spröwitz, Alexandre Tuleu, Massimo Vespignani, Nikos G. Tsagarakis, Auke J. Ijspeert, and Darwin G. Caldwell. 2013. Horse-like walking, trotting, and galloping derived from kinematic Motion Primitives (kMPs) and their application to walk/trot transitions in a compliant quadruped robot. Biological Cybernetics 107, 3 (2013).Google ScholarGoogle Scholar
  33. Simon Pabst, Sybille Krzywinski, Andrea Schenk, and Bernhard Thomaszewski. 2008. Seams and Bending in Cloth Simulation. In Workshop in Virtual Reality Interactions and Physical Simulation "VRIPHYS" (2008), Francois Faure and Matthias Teschner (Eds.). The Eurographics Association. Google ScholarGoogle ScholarCross RefCross Ref
  34. Zherong Pan, Hujun Bao, and Jin Huang. 2015. Subspace Dynamic Simulation Using Rotation-Strain Coordinates. ACM Trans. Graph. 34, 6, Article 242 (Oct. 2015), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Maxime Peeters, Régis Viguié, Guillaume Sérandour, Gaëtan Kerschen, and J-C Golinval. 2009. Nonlinear normal modes, Part II: Toward a practical computation using numerical continuation techniques. Mechanical systems and signal processing 23, 1 (2009), 195--216.Google ScholarGoogle Scholar
  36. A. Pentland and J. Williams. 1989. Good Vibrations: Modal Dynamics for Graphics and Animation. In Proceedings of the 16th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '89). Association for Computing Machinery, New York, NY, USA, 215--222. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Rüdiger Seydel. 2009. Practical bifurcation and stability analysis. Vol. 5. Springer Science & Business Media.Google ScholarGoogle Scholar
  38. Ahmed A. Shabana. 1990. Theory of Vibration, Volume II: Discrete and Continuous Systems. Springer, New York, NY, USA.Google ScholarGoogle Scholar
  39. Mélina Skouras, Bernhard Thomaszewski, Stelian Coros, Bernd Bickel, and Markus Gross. 2013. Computational Design of Actuated Deformable Characters. ACM Trans. Graph. 32, 4, Article 82 (July 2013), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Mélina Skouras, Bernhard Thomaszewski, Peter Kaufmann, Akash Garg, Bernd Bickel, Eitan Grinspun, and Markus Gross. 2014. Designing Inflatable Structures. ACM Trans. Graph. (Proc. SIGGRAPH) 33, 4 (2014).Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Takuto Takahashi, Jonas Zehnder, Hiroshi G. Okuno, Shigeki Sugano, Stelian Coros, and Bernhard Thomaszewski. 2019. Computational Design of Statically Balanced Planar Spring Mechanisms. IEEE Robotics and Automation Letters 4 (2019), 4438--4444.Google ScholarGoogle ScholarCross RefCross Ref
  42. Bernhard Thomaszewski, Stelian Coros, Damien Gauge, Vittorio Megaro, Eitan Grinspun, and Markus Gross. 2014. Computational Design of Linkage-Based Characters. ACM Trans. Graph. 33, 4, Article 64 (July 2014), 9 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Nobuyuki Umetani, Jun Mitani, Takeo Igarashi, and Kenshi Takayama. 2010. Designing Custommade Metallophone with Concurrent Eigenanalysis. In New Interfaces for Musical Expression++ (NIME++). 26--30.Google ScholarGoogle Scholar
  44. Nobuyuki Umetani, Athina Panotopoulou, Ryan Schmidt, and Emily Whiting. 2016. Printone: Interactive Resonance Simulation for Free-Form Print-Wind Instrument Design. ACM Trans. Graph. 35, 6, Article 184 (Nov. 2016), 14 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Hongyi Xu, Espen Knoop, Stelian Coros, and Moritz Bächer. 2018. Bend-it: Design and Fabrication of Kinetic Wire Characters. ACM Trans. Graph. 37, 6, Article 239 (Dec. 2018), 15 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Jonas Zehnder, Stelian Coros, and Bernhard Thomaszewski. 2016. Designing Structurally-Sound Ornamental Curve Networks. ACM Trans. Graph. 35, 4, Article 99 (July 2016), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Ran Zhang, Thomas Auzinger, Duygu Ceylan, Wilmot Li, and Bernd Bickel. 2017. Functionality-Aware Retargeting of Mechanisms to 3D Shapes. ACM Trans. Graph. 36, 4, Article 81 (July 2017), 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Changxi Zheng and Doug L. James. 2011. Toward High-Quality Modal Contact Sound. ACM Trans. Graph. 30, 4, Article 38 (July 2011), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A harmonic balance approach for designing compliant mechanical systems with nonlinear periodic motions

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 39, Issue 6
        December 2020
        1605 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/3414685
        Issue’s Table of Contents

        Copyright © 2020 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 27 November 2020
        Published in tog Volume 39, Issue 6

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader