1932

Abstract

It is increasingly clear that the nectin family and its immunoreceptors shape the immune response to cancer through several pathways. Yet, even as antibodies against TIGIT, CD96, and CD112R advance into clinical development, biological and therapeutic questions remain unanswered. Here, we review recent progress, prospects, and challenges to understanding and tapping this family in cancer immunotherapy.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-060920-084910
2021-03-04
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/5/1/annurev-cancerbio-060920-084910.html?itemId=/content/journals/10.1146/annurev-cancerbio-060920-084910&mimeType=html&fmt=ahah

Literature Cited

  1. Alfei F, Kanev K, Hofmann M, Wu M, Ghoneim HE et al. 2019. TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection. Nature 571:265–69
    [Google Scholar]
  2. Ardolino M, Zingoni A, Cerboni C, Cecere F, Soriani A et al. 2011. DNAM-1 ligand expression on Ag-stimulated T lymphocytes is mediated by ROS-dependent activation of DNA-damage response: relevance for NK-T cell interaction. Blood 117:4778–86
    [Google Scholar]
  3. Barrow AD, Edeling MA, Trifonov V, Luo J, Goyal P et al. 2018. Natural killer cells control tumor growth by sensing a growth factor. Cell 172:534–48.e19
    [Google Scholar]
  4. Bevelacqua V, Bevelacqua Y, Candido S, Skarmoutsou E, Amoroso A et al. 2012. Nectin like-5 overexpression correlates with the malignant phenotype in cutaneous melanoma. Oncotarget 3:882–92
    [Google Scholar]
  5. Blake SJ, Stannard K, Liu J, Allen S, Yong MC et al. 2016. Suppression of metastases using a new lymphocyte checkpoint target for cancer immunotherapy. Cancer Discov 6:446–59
    [Google Scholar]
  6. Bottino C, Castriconi R, Pende D, Rivera P, Nanni M et al. 2003. Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J. Exp. Med. 198:557–67
    [Google Scholar]
  7. Braun M, Das I, Roman Aguilera A, Sundarrajan A, Corvino D et al. 2020. Tumor CD155 drives resistance to immunotherapy by downregulating the activating receptor CD226 in CD8+ T cells. Immunity press
    [Google Scholar]
  8. Brooks J, Fleischmann-Mundt B, Woller N, Niemann J, Ribback S et al. 2018. Perioperative, spatiotemporally coordinated activation of T and NK cells prevents recurrence of pancreatic cancer. Cancer Res 78:475–88
    [Google Scholar]
  9. Bulliard Y, Jolicoeur R, Windman M, Rue SM, Ettenberg S et al. 2013. Activating Fc γ receptors contribute to the antitumor activities of immunoregulatory receptor-targeting antibodies. J. Exp. Med. 210:1685–93
    [Google Scholar]
  10. Bulliard Y, Jolicoeur R, Zhang J, Dranoff G, Wilson NS, Brogdon JL 2014. OX40 engagement depletes intratumoral Tregs via activating FcγRs, leading to antitumor efficacy. Immunol. Cell Biol. 92:475–80
    [Google Scholar]
  11. Carlsten M, Norell H, Bryceson YT, Poschke I, Schedvins K et al. 2009. Primary human tumor cells expressing CD155 impair tumor targeting by down-regulating DNAM-1 on NK cells. J. Immunol. 183:4921–30
    [Google Scholar]
  12. Casado JG, Pawelec G, Morgado S, Sanchez-Correa B, Delgado E et al. 2009. Expression of adhesion molecules and ligands for activating and costimulatory receptors involved in cell-mediated cytotoxicity in a large panel of human melanoma cell lines. Cancer Immunol. Immunother. 58:1517–26
    [Google Scholar]
  13. Castriconi R, Dondero A, Corrias MV, Lanino E, Pende D et al. 2004. Natural killer cell-mediated killing of freshly isolated neuroblastoma cells: critical role of DNAX accessory molecule-1-poliovirus receptor interaction. Cancer Res 64:9180–84
    [Google Scholar]
  14. Cella M, Presti R, Vermi W, Lavender K, Turnbull E et al. 2010. Loss of DNAM-1 contributes to CD8+ T-cell exhaustion in chronic HIV-1 infection. Eur. J. Immunol. 40:949–54
    [Google Scholar]
  15. Chan CJ, Martinet L, Gilfillan S, Souza-Fonseca-Guimaraes F, Chow MT et al. 2014. The receptors CD96 and CD226 oppose each other in the regulation of natural killer cell functions. Nat. Immunol. 15:431–38
    [Google Scholar]
  16. Chauvin JM, Ka M, Pagliano O, Menna C, Ding Q et al. 2020. IL15 stimulation with TIGIT blockade reverses CD155-mediated NK-cell dysfunction in melanoma. Clin. Cancer Res. 26:552033
    [Google Scholar]
  17. Chauvin JM, Pagliano O, Fourcade J, Sun Z, Wang H et al. 2015. TIGIT and PD-1 impair tumor antigen-specific CD8+ T cells in melanoma patients. J. Clin. Investig. 125:2046–58
    [Google Scholar]
  18. Chevrier S, Levine JH, Zanotelli VRT, Silina K, Schulz D et al. 2017. An Immune atlas of clear cell renal cell carcinoma. Cell 169:736–49.e18
    [Google Scholar]
  19. Chew GM, Fujita T, Webb GM, Burwitz BJ, Wu HL et al. 2016. TIGIT marks exhausted T cells, correlates with disease progression, and serves as a target for immune restoration in HIV and SIV infection. PLOS Pathog 12:e1005349
    [Google Scholar]
  20. Chiang EY, de Almeida PE, de Almeida Nagata DE, Bowles KH, Du X et al. 2020. CD96 functions as a co-stimulatory receptor to enhance CD8+ T cell activation and effector responses. Eur. J. Immunol. 50:891–902
    [Google Scholar]
  21. Chiu DKC, Yuen VWH, Cheu JWS, Wei LL, Ting Vet al 2020. Hepatocellular carcinoma cells upregulate PVRL1, stabilizing PVR and inhibiting the cytotoxic T-cell response via TIGIT to mediate tumor resistance to PD1 inhibitors in mice. Gastroenterology 159:260923
    [Google Scholar]
  22. Chung W, Eum HH, Lee HO, Lee KM, Lee HB et al. 2017. Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in primary breast cancer. Nat. Commun. 8:15081
    [Google Scholar]
  23. Croxford JL, Tang ML, Pan MF, Huang CW, Kamran N et al. 2013. ATM-dependent spontaneous regression of early Eμ-myc-induced murine B-cell leukemia depends on natural killer and T cells. Blood 121:2512–21
    [Google Scholar]
  24. Dahan R, Sega E, Engelhardt J, Selby M, Korman AJ, Ravetch JV 2015. FcγRs modulate the anti-tumor activity of antibodies targeting the PD-1/PD-L1 axis. Cancer Cell 28:285–95
    [Google Scholar]
  25. Deuss FA, Gully BS, Rossjohn J, Berry R 2017. Recognition of nectin-2 by the natural killer cell receptor T cell immunoglobulin and ITIM domain (TIGIT). J. Biol. Chem. 292:11413–22
    [Google Scholar]
  26. Deuss FA, Watson GM, Fu Z, Rossjohn J, Berry R 2019a. Structural basis for CD96 immune receptor recognition of nectin-like protein-5, CD155. Structure 27:219–28.e3
    [Google Scholar]
  27. Deuss FA, Watson GM, Goodall KJ, Leece I, Chatterjee S et al. 2019b. Structural basis for the recognition of nectin-like protein-5 by the human-activating immune receptor, DNAM-1. J. Biol. Chem. 294:12534–46
    [Google Scholar]
  28. Dixon KO, Schorer M, Nevin J, Etminan Y, Amoozgar Z et al. 2018. Functional anti-TIGIT antibodies regulate development of autoimmunity and antitumor immunity. J. Immunol. 200:3000–7
    [Google Scholar]
  29. Dougall WC, Kurtulus S, Smyth MJ, Anderson AC 2017. TIGIT and CD96: new checkpoint receptor targets for cancer immunotherapy. Immunol. Rev. 276:112–20
    [Google Scholar]
  30. El-Sherbiny YM, Meade JL, Holmes TD, McGonagle D, Mackie SL et al. 2007. The requirement for DNAM-1, NKG2D, and NKp46 in the natural killer cell-mediated killing of myeloma cells. Cancer Res 67:8444–49
    [Google Scholar]
  31. Escalante NK, von Rossum A, Lee M, Choy JC 2011. CD155 on human vascular endothelial cells attenuates the acquisition of effector functions in CD8 T cells. Arterioscler. Thromb. Vasc. Biol. 31:1177–84
    [Google Scholar]
  32. Fionda C, Soriani A, Zingoni A, Santoni A, Cippitelli M 2015. NKG2D and DNAM-1 ligands: molecular targets for NK cell–mediated immunotherapeutic intervention in multiple myeloma. Biomed. Res. Int. 2015:178698
    [Google Scholar]
  33. Foks AC, Ran IA, Frodermann V, Bot I, van Santbrink PJ et al. 2013. Agonistic anti-TIGIT treatment inhibits T cell responses in LDLr deficient mice without affecting atherosclerotic lesion development. PLOS ONE 8:e83134
    [Google Scholar]
  34. Fourcade J, Sun Z, Chauvin JM, Ka M, Davar D et al. 2018. CD226 opposes TIGIT to disrupt Tregs in melanoma. JCI Insight 3:14e121157
    [Google Scholar]
  35. Freeman ZT, Nirschl TR, Hovelson DH, Johnston RJ, Engelhardt JJ et al. 2020. A conserved intratumoral regulatory T cell signature identifies 4-1BB as a pan-cancer target. J. Clin. Investig. 130:1405–16
    [Google Scholar]
  36. Fuchs A, Cella M, Giurisato E, Shaw AS, Colonna M 2004. Cutting edge: CD96 (tactile) promotes NK cell-target cell adhesion by interacting with the poliovirus receptor (CD155). J. Immunol. 172:3994–98
    [Google Scholar]
  37. Gao J, Zheng Q, Xin N, Wang W, Zhao C 2017. CD155, an onco-immunologic molecule in human tumors. Cancer Sci 108:1934–38
    [Google Scholar]
  38. Gaud G, Roncagalli R, Chaoui K, Bernard I, Familiades J et al. 2018. The costimulatory molecule CD226 signals through VAV1 to amplify TCR signals and promote IL-17 production by CD4+ T cells. Sci. Signal. 11:538eear3083
    [Google Scholar]
  39. Georgiev H, Ravens I, Papadogianni G, Bernhardt G 2018. Coming of age: CD96 emerges as modulator of immune responses. Front. Immunol. 9:1072
    [Google Scholar]
  40. Georgiev H, Ravens I, Shibuya A, Forster R, Bernhardt G 2016. CD155/CD226-interaction impacts on the generation of innate CD8+ thymocytes by regulating iNKT-cell differentiation. Eur. J. Immunol. 46:993–1003
    [Google Scholar]
  41. Gromeier M, Solecki D, Patel DD, Wimmer E 2000. Expression of the human poliovirus receptor/CD155 gene during development of the central nervous system: implications for the pathogenesis of poliomyelitis. Virology 273:248–57
    [Google Scholar]
  42. Guillamon CF, Martinez-Sanchez MV, Gimeno L, Campillo JA, Server-Pastor G et al. 2019. Activating KIRs on educated NK cells support downregulation of CD226 and inefficient tumor immunosurveillance. Cancer Immunol. Res. 7:1307–17
    [Google Scholar]
  43. Guillerey C, Harjunpaa H, Carrie N, Kassem S, Teo T et al. 2018. TIGIT immune checkpoint blockade restores CD8+ T-cell immunity against multiple myeloma. Blood 132:1689–94
    [Google Scholar]
  44. Ha D, Tanaka A, Kibayashi T, Tanemura A, Sugiyama D et al. 2019. Differential control of human Treg and effector T cells in tumor immunity by Fc-engineered anti-CTLA-4 antibody. PNAS 116:609–18
    [Google Scholar]
  45. Harrison OJ, Vendome J, Brasch J, Jin X, Hong S et al. 2012. Nectin ectodomain structures reveal a canonical adhesive interface. Nat. Struct. Mol. Biol. 19:906–15
    [Google Scholar]
  46. Hirota T, Irie K, Okamoto R, Ikeda W, Takai Y 2005. Transcriptional activation of the mouse Necl-5/Tage4/PVR/CD155 gene by fibroblast growth factor or oncogenic Ras through the Raf–MEK–ERK–AP-1 pathway. Oncogene 24:2229–35
    [Google Scholar]
  47. Holmes VM, Maluquer de Motes C, Richards PT, Roldan J, Bhargava AK et al. 2019. Interaction between nectin-1 and the human natural killer cell receptor CD96. PLOS ONE 14:e0212443
    [Google Scholar]
  48. Huang DW, Huang M, Lin XS, Huang Q 2017. CD155 expression and its correlation with clinicopathologic characteristics, angiogenesis, and prognosis in human cholangiocarcinoma. OncoTargets Ther 10:3817–25
    [Google Scholar]
  49. Huang X, Qu P, Chen Y, Zhou X, Wu Y et al. 2014. Low expression of CD112 is associated with poor overall survival in patients with hepatocellular carcinoma. Hum. Pathol. 45:1944–50
    [Google Scholar]
  50. Hung AL, Maxwell R, Theodros D, Belcaid Z, Mathios D et al. 2018. TIGIT and PD-1 dual checkpoint blockade enhances antitumor immunity and survival in GBM. OncoImmunology 7:e1466769
    [Google Scholar]
  51. Husain B, Ramani SR, Chiang E, Lehoux I, Paduchuri S et al. 2019. A platform for extracellular interactome discovery identifies novel functional binding partners for the immune receptors B7-H3/CD276 and PVR/CD155. Mol. Cell Proteom. 18:2310–23
    [Google Scholar]
  52. Iguchi-Manaka A, Kai H, Yamashita Y, Shibata K, Tahara-Hanaoka S et al. 2008. Accelerated tumor growth in mice deficient in DNAM-1 receptor. J. Exp. Med. 205:2959–64
    [Google Scholar]
  53. Iguchi-Manaka A, Okumura G, Kojima H, Cho Y, Hirochika R et al. 2016. Increased soluble CD155 in the serum of cancer patients. PLOS ONE 11:e0152982
    [Google Scholar]
  54. Ikeda W, Kakunaga S, Itoh S, Shingai T, Takekuni K et al. 2003. Tage4/nectin-like molecule-5 heterophilically trans-interacts with cell adhesion molecule nectin-3 and enhances cell migration. J. Biol. Chem. 278:28167–72
    [Google Scholar]
  55. Inozume T, Yaguchi T, Furuta J, Harada K, Kawakami Y, Shimada S 2016. Melanoma cells control antimelanoma CTL responses via interaction between TIGIT and CD155 in the effector phase. J. Investig. Dermatol. 136:255–63
    [Google Scholar]
  56. Jin HS, Ko M, Choi DS, Kim JH, Lee DH et al. 2020. CD226hiCD8+ T cells are a prerequisite for anti-TIGIT immunotherapy. Cancer Immunol. Res. 204:1 Suppl.165.10
    [Google Scholar]
  57. Johnston RJ, Comps-Agrar L, Hackney J, Yu X, Huseni M et al. 2014. The immunoreceptor TIGIT regulates antitumor and antiviral CD8+ T cell effector function. Cancer Cell 26:923–37
    [Google Scholar]
  58. Joller N, Lozano E, Burkett PR, Patel B, Xiao S et al. 2014. Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity 40:569–81
    [Google Scholar]
  59. Kakunaga S, Ikeda W, Shingai T, Fujito T, Yamada A et al. 2004. Enhancement of serum- and platelet-derived growth factor-induced cell proliferation by Necl-5/Tage4/poliovirus receptor/CD155 through the Ras-Raf-MEK-ERK signaling. J. Biol. Chem. 279:36419–25
    [Google Scholar]
  60. Kamran N, Takai Y, Miyoshi J, Biswas SK, Wong JS, Gasser S 2013. Toll-like receptor ligands induce expression of the costimulatory molecule CD155 on antigen-presenting cells. PLOS ONE 8:e54406
    [Google Scholar]
  61. Kearney CJ, Ramsbottom KM, Voskoboinik I, Darcy PK, Oliaro J 2016. Loss of DNAM-1 ligand expression by acute myeloid leukemia cells renders them resistant to NK cell killing. OncoImmunology 5:e1196308
    [Google Scholar]
  62. Khan O, Giles JR, McDonald S, Manne S, Ngiow SF et al. 2019. TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion. Nature 571:211–18
    [Google Scholar]
  63. Kinugasa M, Amano H, Satomi-Kobayashi S, Nakayama K, Miyata M et al. 2012. Necl-5/poliovirus receptor interacts with VEGFR2 and regulates VEGF-induced angiogenesis. Circ. Res. 110:716–26
    [Google Scholar]
  64. Koike S, Horie H, Ise I, Okitsu A, Yoshida M et al. 1990. The poliovirus receptor protein is produced both as membrane-bound and secreted forms. EMBO J 9:3217–24
    [Google Scholar]
  65. Kono T, Imai Y, Yasuda S, Ohmori K, Fukui H et al. 2008. The CD155/poliovirus receptor enhances the proliferation of ras-mutated cells. Int. J. Cancer 122:317–24
    [Google Scholar]
  66. Kučan Brlić P, Lenac Roviš T, Cinamon G, Tsukerman P, Mandelboim O, Jonjić S 2019. Targeting PVR (CD155) and its receptors in anti-tumor therapy. Cell Mol. Immunol. 16:40–52
    [Google Scholar]
  67. Kurtulus S, Sakuishi K, Ngiow SF, Joller N, Tan DJ et al. 2015. TIGIT predominantly regulates the immune response via regulatory T cells. J. Clin. Investig. 125:4053–62
    [Google Scholar]
  68. Lange R, Peng X, Wimmer E, Lipp M, Bernhardt G 2001. The poliovirus receptor CD155 mediates cell-to-matrix contacts by specifically binding to vitronectin. Virology 285:218–27
    [Google Scholar]
  69. Lepletier A, Lutzky VP, Mittal D, Stannard K, Watkins TS et al. 2019. The immune checkpoint CD96 defines a distinct lymphocyte phenotype and is highly expressed on tumor-infiltrating T cells. Immunol. Cell Biol. 97:152–64
    [Google Scholar]
  70. Lepletier A, Madore J, O'Donnell JS, Johnston RL, Li XY et al. 2020. Tumor CD155 expression is associated with resistance to anti-PD1 immunotherapy in metastatic melanoma. Clin. Cancer Res. 26:143671–81
    [Google Scholar]
  71. Levin SD, Taft DW, Brandt CS, Bucher C, Howard ED et al. 2011. Vstm3 is a member of the CD28 family and an important modulator of T-cell function. Eur. J. Immunol. 41:902–15
    [Google Scholar]
  72. Li M, Xia P, Du Y, Liu S, Huang G et al. 2014. T-cell immunoglobulin and ITIM domain (TIGIT) receptor/poliovirus receptor (PVR) ligand engagement suppresses interferon-γ production of natural killer cells via β-arrestin 2-mediated negative signaling. J. Biol. Chem. 289:17647–57
    [Google Scholar]
  73. Li XY, Das I, Lepletier A, Addala V, Bald T et al. 2018. CD155 loss enhances tumor suppression via combined host and tumor-intrinsic mechanisms. J. Clin. Investig. 128:2613–25
    [Google Scholar]
  74. Liu J, Qian X, Chen Z, Xu X, Gao F et al. 2012. Crystal structure of cell adhesion molecule nectin-2/CD112 and its binding to immune receptor DNAM-1/CD226. J. Immunol. 188:5511–20
    [Google Scholar]
  75. Liu S, Zhang H, Li M, Hu D, Li C et al. 2013. Recruitment of Grb2 and SHIP1 by the ITT-like motif of TIGIT suppresses granule polarization and cytotoxicity of NK cells. Cell Death Differ 20:456–64
    [Google Scholar]
  76. Liu X, An T, Li D, Fan Z, Xiang P et al. 2019. Structure of the heterophilic interaction between the nectin-like 4 and nectin-like 1 molecules. PNAS 116:2068–77
    [Google Scholar]
  77. Lopez M, Aoubala M, Jordier F, Isnardon D, Gomez S, Dubreuil P 1998. The human poliovirus receptor related 2 protein is a new hematopoietic/endothelial homophilic adhesion molecule. Blood 92:4602–11
    [Google Scholar]
  78. Lozano E, Dominguez-Villar M, Kuchroo V, Hafler DA 2012. The TIGIT/CD226 axis regulates human T cell function. J. Immunol. 188:3869–75
    [Google Scholar]
  79. Lucca LE, Axisa PP, Singer ER, Nolan NM, Dominguez-Villar M, Hafler DA 2019. TIGIT signaling restores suppressor function of Th1 Tregs. JCI Insight 4:e124427
    [Google Scholar]
  80. Mandai K, Rikitake Y, Mori M, Takai Y 2015. Nectins and nectin-like molecules in development and disease. Curr. Top. Dev. Biol. 112:197–231
    [Google Scholar]
  81. Masson D, Jarry A, Baury B, Blanchardie P, Laboisse C et al. 2001. Overexpression of the CD155 gene in human colorectal carcinoma. Gut 49:236–40
    [Google Scholar]
  82. Mastaglio S, Wong E, Perera T, Ripley J, Blombery P et al. 2018. Natural killer receptor ligand expression on acute myeloid leukemia impacts survival and relapse after chemotherapy. Blood Adv 2:335–46
    [Google Scholar]
  83. Mendelsohn CL, Wimmer E, Racaniello VR 1989. Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell 56:855–65
    [Google Scholar]
  84. Miao X, Yang ZL, Xiong L, Zou Q, Yuan Y et al. 2013. Nectin-2 and DDX3 are biomarkers for metastasis and poor prognosis of squamous cell/adenosquamous carcinomas and adenocarcinoma of gallbladder. Int. J. Clin. Exp. Pathol. 6:179–90
    [Google Scholar]
  85. Minnie SA, Kuns RD, Gartlan KH, Zhang P, Wilkinson AN et al. 2018. Myeloma escape after stem cell transplantation is a consequence of T-cell exhaustion and is prevented by TIGIT blockade. Blood 132:1675–88
    [Google Scholar]
  86. Mittal D, Lepletier A, Madore J, Aguilera AR, Stannard K et al. 2019. CD96 is an immune checkpoint that regulates CD8+ T-cell antitumor function. Cancer Immunol. Res. 7:559–71
    [Google Scholar]
  87. Molfetta R, Milito ND, Zitti B, Lecce M, Fionda C et al. 2019. The Ubiquitin-proteasome pathway regulates Nectin2/CD112 expression and impairs NK cell recognition and killing. Eur. J. Immunol. 49:873–83
    [Google Scholar]
  88. Mueller S, Wimmer E. 2003. Recruitment of nectin-3 to cell-cell junctions through trans-heterophilic interaction with CD155, a vitronectin and poliovirus receptor that localizes to αvβ3 integrin-containing membrane microdomains. J. Biol. Chem. 278:31251–60
    [Google Scholar]
  89. Murter B, Pan X, Ophir E, Alteber Z, Azulay M et al. 2019. Mouse PVRIG has CD8+ T cell–specific coinhibitory functions and dampens antitumor immunity. Cancer Immunol. Res. 7:244–56
    [Google Scholar]
  90. Nagumo Y, Iguchi-Manaka A, Yamashita-Kanemaru Y, Abe F, Bernhardt G et al. 2014. Increased CD112 expression in methylcholanthrene-induced tumors in CD155-deficient mice. PLOS ONE 9:e112415
    [Google Scholar]
  91. Nakai R, Maniwa Y, Tanaka Y, Nishio W, Yoshimura M et al. 2010. Overexpression of Necl-5 correlates with unfavorable prognosis in patients with lung adenocarcinoma. Cancer Sci 101:1326–30
    [Google Scholar]
  92. Nishiwada S, Sho M, Yasuda S, Shimada K, Yamato I et al. 2015. Nectin-4 expression contributes to tumor proliferation, angiogenesis and patient prognosis in human pancreatic cancer. J. Exp. Clin. Cancer Res. 34:30
    [Google Scholar]
  93. Niu J, Nagrial A, Voskoboynik M, Chung HC, Lee DH et al. 2020. Safety and efficacy of vibostolimab, an anti-TIGIT antibody, plus pembrolizumab in patients with anti-PD-1/PD-L1-naive NSCLC. Ann. Oncol. 31:Suppl. 4S891–92 Abstr .)
    [Google Scholar]
  94. Oda T, Ohka S, Nomoto A 2004. Ligand stimulation of CD155α inhibits cell adhesion and enhances cell migration in fibroblasts. Biochem. Biophys. Res. Commun. 319:1253–64
    [Google Scholar]
  95. Okumura G, Iguchi-Manaka A, Murata R, Yamashita-Kanemaru Y, Shibuya A, Shibuya K 2020. Tumor-derived soluble CD155 inhibits DNAM-1–mediated antitumor activity of natural killer cells. J. Exp. Med. 217:4e20191290
    [Google Scholar]
  96. Pende D, Bottino C, Castriconi R, Cantoni C, Marcenaro S et al. 2005. PVR (CD155) and Nectin-2 (CD112) as ligands of the human DNAM-1 (CD226) activating receptor: involvement in tumor cell lysis. Mol. Immunol. 42:463–69
    [Google Scholar]
  97. Pende D, Castriconi R, Romagnani P, Spaggiari GM, Marcenaro S et al. 2006. Expression of the DNAM-1 ligands, Nectin-2 (CD112) and poliovirus receptor (CD155), on dendritic cells: relevance for natural killer-dendritic cell interaction. Blood 107:2030–36
    [Google Scholar]
  98. Reymond N, Imbert AM, Devilard E, Fabre S, Chabannon C et al. 2004. DNAM-1 and PVR regulate monocyte migration through endothelial junctions. J. Exp. Med. 199:1331–41
    [Google Scholar]
  99. Rodriguez-Abreu D, Johnson ML, Hussein MA, Cobo M, Patel AJ et al. 2020. Primary analysis of a randomized, double-blind, phase II study of the anti-TIGIT antibody tiragolumab (tira) plus atezolizumab (atezo) versus placebo plus atezo as first-line (1L) treatment in patients with PD-L1-selected NSCLC (CITYSCAPE). J. Clin. Oncol. 38:159503 Abstr .)
    [Google Scholar]
  100. Roman Aguilera A, Lutzky VP, Mittal D, Li XY, Stannard K et al. 2018. CD96 targeted antibodies need not block CD96-CD155 interactions to promote NK cell anti-metastatic activity. OncoImmunology 7:e1424677
    [Google Scholar]
  101. Romano E, Kusio-Kobialka M, Foukas PG, Baumgaertner P, Meyer C et al. 2015. Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients. PNAS 112:6140–45
    [Google Scholar]
  102. Samanta D, Ramagopal UA, Rubinstein R, Vigdorovich V, Nathenson SG, Almo SC 2012. Structure of Nectin-2 reveals determinants of homophilic and heterophilic interactions that control cell–cell adhesion. PNAS 109:14836–40
    [Google Scholar]
  103. Sanchez-Correa B, Gayoso I, Bergua JM, Casado JG, Morgado S et al. 2012. Decreased expression of DNAM-1 on NK cells from acute myeloid leukemia patients. Immunol. Cell Biol. 90:109–15
    [Google Scholar]
  104. Satoh-Horikawa K, Nakanishi H, Takahashi K, Miyahara M, Nishimura M et al. 2000. Nectin-3, a new member of immunoglobulin-like cell adhesion molecules that shows homophilic and heterophilic cell-cell adhesion activities. J. Biol. Chem. 275:10291–99
    [Google Scholar]
  105. Scott AC, Dundar F, Zumbo P, Chandran SS, Klebanoff CA et al. 2019. TOX is a critical regulator of tumour-specific T cell differentiation. Nature 571:270–74
    [Google Scholar]
  106. Selby MJ, Engelhardt JJ, Quigley M, Henning KA, Chen T et al. 2013. Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. Cancer Immunol. Res. 1:32–42
    [Google Scholar]
  107. Seth S, Qiu Q, Danisch S, Maier MK, Braun A et al. 2011. Intranodal interaction with dendritic cells dynamically regulates surface expression of the co-stimulatory receptor CD226 protein on murine T cells. J. Biol. Chem. 286:39153–63
    [Google Scholar]
  108. Sharma A, Subudhi SK, Blando J, Scutti J, Vence L et al. 2019. Anti-CTLA-4 immunotherapy does not deplete FOXP3+ regulatory T cells (Tregs) in human cancers. Clin. Cancer Res. 25:1233–38
    [Google Scholar]
  109. Simpson TR, Li F, Montalvo-Ortiz W, Sepulveda MA, Bergerhoff K et al. 2013. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti–CTLA-4 therapy against melanoma. J. Exp. Med. 210:1695–710
    [Google Scholar]
  110. Sloan KE, Eustace BK, Stewart JK, Zehetmeier C, Torella C et al. 2004. CD155/PVR plays a key role in cell motility during tumor cell invasion and migration. BMC Cancer 4:73
    [Google Scholar]
  111. Solecki DJ, Gromeier M, Mueller S, Bernhardt G, Wimmer E 2002. Expression of the human poliovirus receptor/CD155 gene is activated by sonic hedgehog. J. Biol. Chem. 277:25697–702
    [Google Scholar]
  112. Soriani A, Zingoni A, Cerboni C, Iannitto ML, Ricciardi MR et al. 2009. ATM-ATR-dependent up-regulation of DNAM-1 and NKG2D ligands on multiple myeloma cells by therapeutic agents results in enhanced NK-cell susceptibility and is associated with a senescent phenotype. Blood 113:3503–11
    [Google Scholar]
  113. Stanietsky N, Simic H, Arapovic J, Toporik A, Levy O et al. 2009. The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. PNAS 106:17858–63
    [Google Scholar]
  114. Stengel KF, Harden-Bowles K, Yu X, Rouge L, Yin J et al. 2012. Structure of TIGIT immunoreceptor bound to poliovirus receptor reveals a cell–cell adhesion and signaling mechanism that requires cis-trans receptor clustering. PNAS 109:5399–404
    [Google Scholar]
  115. Sullivan DP, Seidman MA, Muller WA 2013. Poliovirus receptor (CD155) regulates a step in transendothelial migration between PECAM and CD99. Am. J. Pathol. 182:1031–42
    [Google Scholar]
  116. Sun H, Huang Q, Huang M, Wen H, Lin R et al. 2019. Human CD96 correlates to natural killer cell exhaustion and predicts the prognosis of human hepatocellular carcinoma. Hepatology 70:168–83
    [Google Scholar]
  117. Tahara-Hanaoka S, Shibuya K, Onoda Y, Zhang H, Yamazaki S et al. 2004. Functional characterization of DNAM-1 (CD226) interaction with its ligands PVR (CD155) and nectin-2 (PRR-2/CD112). Int. Immunol. 16:533–38
    [Google Scholar]
  118. Takai Y, Miyoshi J, Ikeda W, Ogita H 2008. Nectins and nectin-like molecules: roles in contact inhibition of cell movement and proliferation. Nat. Rev. Mol. Cell Biol. 9:603–15
    [Google Scholar]
  119. Triki H, Charfi S, Bouzidi L, Ben Kridis W, Daoud J et al. 2019. CD155 expression in human breast cancer: clinical significance and relevance to natural killer cell infiltration. Life Sci 231:116543
    [Google Scholar]
  120. Vallejo AN, Brandes JC, Weyand CM, Goronzy JJ 1999. Modulation of CD28 expression: distinct regulatory pathways during activation and replicative senescence. J. Immunol. 162:6572–79
    [Google Scholar]
  121. Vassena L, Giuliani E, Matusali G, Cohen EA, Doria M 2013. The human immunodeficiency virus type 1 Vpr protein upregulates PVR via activation of the ATR-mediated DNA damage response pathway. J. Gen. Virol. 94:2664–69
    [Google Scholar]
  122. Waight JD, Chand D, Dietrich S, Gombos R, Horn T et al. 2018. Selective FcγR co-engagement on APCs modulates the activity of therapeutic antibodies targeting T cell antigens. Cancer Cell 33:1033–47.e5
    [Google Scholar]
  123. Wang B, Zhang W, Jankovic V, Golubov J, Poon P et al. 2018. Combination cancer immunotherapy targeting PD-1 and GITR can rescue CD8+ T cell dysfunction and maintain memory phenotype. Sci. Immunol. 3:eaat7061
    [Google Scholar]
  124. Wang H, Qi J, Zhang S, Li Y, Tan S, Gao GF 2019. Binding mode of the side-by-side two-IgV molecule CD226/DNAM-1 to its ligand CD155/Necl-5. PNAS 116:988–96
    [Google Scholar]
  125. Whelan S, Ophir E, Kotturi MF, Levy O, Ganguly S et al. 2019. PVRIG and PVRL2 are induced in cancer and inhibit CD8+ T-cell function. Cancer Immunol. Res. 7:257–68
    [Google Scholar]
  126. Williams SMG, Laface D, Fayadat-Dilman L, Raghunathan G, Liang L, Seghezzi W 2020. Anti-TIGIT antibodies US Patent 10,618,518
  127. Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P et al. 2011. Overview of the CCP4 suite and current developments. Acta Crystallogr. D 67:235–42
    [Google Scholar]
  128. Wu L, Mao L, Liu JF, Chen L, Yu GT et al. 2019. Blockade of TIGIT/CD155 signaling reverses T-cell exhaustion and enhances antitumor capability in head and neck squamous cell carcinoma. Cancer Immunol. Res. 7:1700–13
    [Google Scholar]
  129. Xu F, Sunderland A, Zhou Y, Schulick RD, Edil BH, Zhu Y 2017. Blockade of CD112R and TIGIT signaling sensitizes human natural killer cell functions. Cancer Immunol. Immunother. 66:1367–75
    [Google Scholar]
  130. Yamashita-Kanemaru Y, Takahashi Y, Wang Y, Tahara-Hanaoka S, Honda S et al. 2015. CD155 (PVR/Necl5) mediates a costimulatory signal in CD4+ T cells and regulates allergic inflammation. J. Immunol. 194:5644–53
    [Google Scholar]
  131. Yong H, Cheng R, Li X, Gao G, Jiang X et al. 2019. CD155 expression and its prognostic value in postoperative patients with breast cancer. Biomed. Pharmacother. 115:108884
    [Google Scholar]
  132. Yu X, Harden K, Gonzalez LC, Francesco M, Chiang E et al. 2009. The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat. Immunol. 10:48–57
    [Google Scholar]
  133. Yusa S, Catina TL, Campbell KS 2002. SHP-1- and phosphotyrosine-independent inhibitory signaling by a killer cell Ig-like receptor cytoplasmic domain in human NK cells. J. Immunol. 168:5047–57
    [Google Scholar]
  134. Zhang Q, Bi J, Zheng X, Chen Y, Wang H et al. 2018. Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity. Nat. Immunol. 19:723–32
    [Google Scholar]
  135. Zhang Z, Wu N, Lu Y, Davidson D, Colonna M, Veillette A 2015. DNAM-1 controls NK cell activation via an ITT-like motif. J. Exp. Med. 212:2165–82
    [Google Scholar]
  136. Zhu Y, Paniccia A, Schulick AC, Chen W, Koenig MR et al. 2016. Identification of CD112R as a novel checkpoint for human T cells. J. Exp. Med. 213:167–76
    [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-060920-084910
Loading
/content/journals/10.1146/annurev-cancerbio-060920-084910
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error