1932

Abstract

Childhood hematological malignancies (HM) exhibit profound genetic and biological heterogeneity. Many sporadic and familial HM have a heritable predisposition. Genomic sequencing has revised the taxonomy of lymphoid and myeloid leukemias, indicating the importance of accurate molecular diagnosis in disease management. Notable examples include the identification of gene expression–based subtypes of acute lymphoblastic leukemia (ALL), identification of diverse rearrangements of in high-risk acute myeloid leukemia (AML), characterization of the interplay of cell-of-origin and genomic alterations in lineage-ambiguous leukemias, and the prognostic importance of DNA methylation in juvenile myelomonocytic leukemias. These insights provide therapeutic opportunities, including kinase inhibition in Ph-like ALL, menin inhibition in -rearranged AML, histone deacetylase inhibition in -rearranged ALL, and FLT3 inhibition in T-lineage and myeloid leukemias. We provide an overview of the molecular foundation and classification of childhood leukemias, focusing on recent scientific advances, and discuss potential therapeutic implications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-043020-110055
2021-03-04
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/5/1/annurev-cancerbio-043020-110055.html?itemId=/content/journals/10.1146/annurev-cancerbio-043020-110055&mimeType=html&fmt=ahah

Literature Cited

  1. Abraham BJ, Hnisz D, Weintraub AS, Kwiatkowski N, Li CH et al. 2017. Small genomic insertions form enhancers that misregulate oncogenes. Nat. Commun. 8:14385
    [Google Scholar]
  2. Alexander TB, Gu Z, Iacobucci I, Dickerson K, Choi JK et al. 2018. The genetic basis and cell of origin of mixed phenotype acute leukaemia. Nature 562:373–79
    [Google Scholar]
  3. Alexander TB, Lacayo NJ, Choi JK, Ribeiro RC, Pui CH, Rubnitz JE 2016. Phase I study of selinexor, a selective inhibitor of nuclear export, in combination with fludarabine and cytarabine, in pediatric relapsed or refractory acute leukemia. J. Clin. Oncol. 34:4094–101
    [Google Scholar]
  4. Anderson K, Lutz C, van Delft FW, Bateman CM, Guo Y et al. 2011. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature 469:356–61
    [Google Scholar]
  5. Andersson AK, Ma J, Wang J, Chen X, Gedman AL et al. 2015. The landscape of somatic mutations in infant MLL-rearranged acute lymphoblastic leukemias. Nat. Genet. 47:330–37
    [Google Scholar]
  6. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ et al. 2016. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127:2391–405
    [Google Scholar]
  7. Bachas C, Schuurhuis GJ, Hollink IH, Kwidama ZJ, Goemans BF et al. 2010. High-frequency type I/II mutational shifts between diagnosis and relapse are associated with outcome in pediatric AML: implications for personalized medicine. Blood 116:2752–58
    [Google Scholar]
  8. Balgobind BV, Hollink IH, Arentsen-Peters ST, Zimmermann M, Harbott J et al. 2011. Integrative analysis of type-I and type-II aberrations underscores the genetic heterogeneity of pediatric acute myeloid leukemia. Haematologica 96:1478–87
    [Google Scholar]
  9. Bally C, Fadlallah J, Leverger G, Bertrand Y, Robert A et al. 2012. Outcome of acute promyelocytic leukemia (APL) in children and adolescents: an analysis in two consecutive trials of the European APL Group. J. Clin. Oncol. 30:1641–46
    [Google Scholar]
  10. Bateman CM, Colman SM, Chaplin T, Young BD, Eden TO et al. 2010. Acquisition of genome-wide copy number alterations in monozygotic twins with acute lymphoblastic leukemia. Blood 115:3553–58
    [Google Scholar]
  11. Bolouri H, Farrar JE, Triche T Jr., Ries RE, Lim EL et al. 2018. The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions. Nat. Med. 24:103–12
    [Google Scholar]
  12. Brown AL, Arts P, Carmichael CL, Babic M, Dobbins J et al. 2020. RUNX1-mutated families show phenotype heterogeneity and a somatic mutation profile unique to germline predisposed AML. Blood Adv 4:1131–44
    [Google Scholar]
  13. Brown P, McIntyre E, Rau R, Meshinchi S, Lacayo N et al. 2007. The incidence and clinical significance of nucleophosmin mutations in childhood AML. Blood 110:979–85
    [Google Scholar]
  14. Cancer Genome Atlas Res. Netw. Ley TJ, Miller C, Ding L, Raphael BJ et al. 2013. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 368:2059–74
    [Google Scholar]
  15. Churchman ML, Low J, Qu C, Paietta EM, Kasper LH et al. 2015. Efficacy of retinoids in IKZF1-mutated BCR-ABL1 acute lymphoblastic leukemia. Cancer Cell 28:343–56
    [Google Scholar]
  16. Churchman ML, Qian M, Te Kronnie G, Zhang R, Yang W et al. 2018. Germline genetic IKZF1 variation and predisposition to childhood acute lymphoblastic leukemia. Cancer Cell 33:937–48.e8
    [Google Scholar]
  17. Conway AE, Haldeman JM, Wechsler DS, Lavau CP 2015. A critical role for CRM1 in regulating HOXA gene transcription in CALM-AF10 leukemias. Leukemia 29:423–32
    [Google Scholar]
  18. Coustan-Smith E, Mullighan CG, Onciu M, Behm FG, Raimondi SC et al. 2009. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol 10:147–56
    [Google Scholar]
  19. De Bie J, Demeyer S, Alberti-Servera L, Geerdens E, Segers H et al. 2018. Single-cell sequencing reveals the origin and the order of mutation acquisition in T-cell acute lymphoblastic leukemia. Leukemia 32:1358–69
    [Google Scholar]
  20. de Rooij JD, Branstetter C, Ma J, Li Y, Walsh MP et al. 2017. Pediatric non-Down syndrome acute megakaryoblastic leukemia is characterized by distinct genomic subsets with varying outcomes. Nat. Genet. 49:451–56
    [Google Scholar]
  21. de Smith AJ, Lavoie G, Walsh KM, Aujla S, Evans E et al. 2019. Predisposing germline mutations in high hyperdiploid acute lymphoblastic leukemia in children. Genes Chromosomes Cancer 58:723–30
    [Google Scholar]
  22. Den Boer ML, van Slegtenhorst M, De Menezes RX, Cheok MH, Buijs-Gladdines JG et al. 2009. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol 10:125–34
    [Google Scholar]
  23. Dobson SM, Garcia-Prat L, Vanner RJ, Wintersinger J, Waanders E et al. 2020. Relapse fated latent diagnosis subclones in acute B lineage leukaemia are drug tolerant and possess distinct metabolic programs. Cancer Discov 10:4568–87
    [Google Scholar]
  24. Downing JR. 2003. The core-binding factor leukemias: lessons learned from murine models. Curr. Opin. Genet. Dev. 13:48–54
    [Google Scholar]
  25. Farrar JE, Schuback HL, Ries RE, Wai D, Hampton OA et al. 2016. Genomic profiling of pediatric acute myeloid leukemia reveals a changing mutational landscape from disease diagnosis to relapse. Cancer Res 76:2197–205
    [Google Scholar]
  26. Ferrando AA, Neuberg DS, Staunton J, Loh ML, Huard C et al. 2002. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 1:75–87
    [Google Scholar]
  27. Feurstein S, Godley LA. 2017. Germline ETV6 mutations and predisposition to hematological malignancies. Int. J. Hematol. 106:189–95
    [Google Scholar]
  28. Franks TM, McCloskey A, Shokirev MN, Benner C, Rathore A, Hetzer MW 2017. Nup98 recruits the Wdr82-Set1A/COMPASS complex to promoters to regulate H3K4 trimethylation in hematopoietic progenitor cells. Genes Dev 31:2222–34
    [Google Scholar]
  29. Gianni F, Belver L, Ferrando A 2020. The genetics and mechanisms of T-cell acute lymphoblastic leukemia. Cold Spring Harb. Perspect. Med. 10:a035246
    [Google Scholar]
  30. Gocho Y, Kiyokawa N, Ichikawa H, Nakabayashi K, Osumi T et al. 2015. A novel recurrent EP300-ZNF384 gene fusion in B-cell precursor acute lymphoblastic leukemia. Leukemia 29:2445–48
    [Google Scholar]
  31. Gocho Y, Yang JJ. 2019. Genetic defects in hematopoietic transcription factors and predisposition to acute lymphoblastic leukemia. Blood 134:793–97
    [Google Scholar]
  32. Granja JM, Klemm S, McGinnis LM, Kathiria AS, Mezger A et al. 2019. Single-cell multiomic analysis identifies regulatory programs in mixed-phenotype acute leukemia. Nat. Biotechnol. 37:1458–65
    [Google Scholar]
  33. Greaves M, Janossy G. 1978. Patterns of gene expression and the cellular origins of human leukaemias. Biochim. Biophys. Acta 516:193–230
    [Google Scholar]
  34. Grembecka J, He S, Shi A, Purohit T, Muntean AG et al. 2012. Menin-MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia. Nat. Chem. Biol. 8:277–84
    [Google Scholar]
  35. Gruber TA, Larson Gedman A, Zhang J, Koss CS, Marada S et al. 2012. An Inv(16)(p13.3q24.3)-encoded CBFA2T3-GLIS2 fusion protein defines an aggressive subtype of pediatric acute megakaryoblastic leukemia. Cancer Cell 22:683–97
    [Google Scholar]
  36. Gu Z, Churchman M, Roberts K, Li Y, Liu Y et al. 2016. Genomic analyses identify recurrent MEF2D fusions in acute lymphoblastic leukaemia. Nat. Commun. 7:13331
    [Google Scholar]
  37. Gu Z, Churchman ML, Roberts KG, Moore I, Zhou X et al. 2019. PAX5-driven subtypes of B-progenitor acute lymphoblastic leukemia. Nat. Genet. 51:296–307
    [Google Scholar]
  38. Hamadeh L, Enshaei A, Schwab C, Alonso CN, Attarbaschi A et al. 2019. Validation of the United Kingdom copy-number alteration classifier in 3239 children with B-cell precursor ALL. Blood Adv 3:148–57
    [Google Scholar]
  39. Harrison CJ, Moorman AV, Broadfield ZJ, Cheung KL, Harris RL et al. 2004. Three distinct subgroups of hypodiploidy in acute lymphoblastic leukaemia. Br. J. Haematol. 125:552–59
    [Google Scholar]
  40. Hasle H, Clemmensen IH, Mikkelsen M 2000. Risks of leukaemia and solid tumours in individuals with Down's syndrome. Lancet 355:165–69
    [Google Scholar]
  41. Hebert J, Cayuela JM, Berkeley J, Sigaux F 1994. Candidate tumor-suppressor genes MTS1 (p16INK4A) and MTS2 (p15INK4B) display frequent homozygous deletions in primary cells from T- but not from B-cell lineage acute lymphoblastic leukemias. Blood 84:4038–44
    [Google Scholar]
  42. Herranz D, Ambesi-Impiombato A, Palomero T, Schnell SA, Belver L et al. 2014. A NOTCH1-driven MYC enhancer promotes T cell development, transformation and acute lymphoblastic leukemia. Nat. Med. 20:1130–37
    [Google Scholar]
  43. Hirabayashi S, Ohki K, Nakabayashi K, Ichikawa H, Momozawa Y et al. 2017. ZNF384-related fusion genes define a subgroup of childhood B-cell precursor acute lymphoblastic leukemia with a characteristic immunotype. Haematologica 102:118–29
    [Google Scholar]
  44. Ho PA, Zeng R, Alonzo TA, Gerbing RB, Miller KL et al. 2010. Prevalence and prognostic implications of WT1 mutations in pediatric acute myeloid leukemia (AML): a report from the Children's Oncology Group. Blood 116:702–10
    [Google Scholar]
  45. Hollink IH, van den Heuvel-Eibrink MM, Arentsen-Peters ST, Zimmermann M, Peeters JK et al. 2011. Characterization of CEBPA mutations and promoter hypermethylation in pediatric acute myeloid leukemia. Haematologica 96:384–92
    [Google Scholar]
  46. Holmfeldt L, Wei L, Diaz-Flores E, Walsh M, Zhang J et al. 2013. The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nat. Genet. 45:242–52
    [Google Scholar]
  47. Iacobucci I, Wen J, Meggendorfer M, Choi JK, Shi L et al. 2019. Genomic subtyping and therapeutic targeting of acute erythroleukemia. Nat. Genet. 51:694–704
    [Google Scholar]
  48. Jeha S, Pei D, Choi J, Cheng C, Sandlund JT et al. 2019. Improved CNS control of childhood acute lymphoblastic leukemia without cranial irradiation: St Jude Total Therapy Study 16. J. Clin. Oncol. 37:3377–91
    [Google Scholar]
  49. Karol SE, Larsen E, Cheng C, Cao X, Yang W et al. 2017. Genetics of ancestry-specific risk for relapse in acute lymphoblastic leukemia. Leukemia 31:1325–32
    [Google Scholar]
  50. Klein K, Kaspers G, Harrison CJ, Beverloo HB, Reedijk A et al. 2015. Clinical impact of additional cytogenetic aberrations, cKIT and RAS mutations, and treatment elements in pediatric t(8;21)-AML: results from an international retrospective study by the International Berlin-Frankfurt-Munster Study Group. J. Clin. Oncol. 33:4247–58
    [Google Scholar]
  51. Kontro M, Kuusanmaki H, Eldfors S, Burmeister T, Andersson EI et al. 2014. Novel activating STAT5B mutations as putative drivers of T-cell acute lymphoblastic leukemia. Leukemia 28:1738–42
    [Google Scholar]
  52. Krivtsov AV, Evans K, Gadrey JY, Eschle BK, Hatton C et al. 2019. A Menin-MLL inhibitor induces specific chromatin changes and eradicates disease in models of MLL-rearranged leukemia. Cancer Cell 36:660–73.e11
    [Google Scholar]
  53. Kuehn HS, Boisson B, Cunningham-Rundles C, Reichenbach J, Stray-Pedersen A et al. 2016. Loss of B cells in patients with heterozygous mutations in IKAROS. N. Engl. J. Med. 374:1032–43
    [Google Scholar]
  54. Kuhn MW, Song E, Feng Z, Sinha A, Chen CW et al. 2016. Targeting chromatin regulators inhibits leukemogenic gene expression in NPM1 mutant leukemia. Cancer Discov 6:1166–81
    [Google Scholar]
  55. Kuiper RP, Schoenmakers EF, van Reijmersdal SV, Hehir-Kwa JY, van Kessel AG et al. 2007. High-resolution genomic profiling of childhood ALL reveals novel recurrent genetic lesions affecting pathways involved in lymphocyte differentiation and cell cycle progression. Leukemia 21:1258–66
    [Google Scholar]
  56. Li B, Brady SW, Ma X, Shen S, Zhang Y et al. 2020. Therapy-induced mutations drive the genomic landscape of relapsed acute lymphoblastic leukemia. Blood 135:41–55
    [Google Scholar]
  57. Li B, Li H, Bai Y, Kirschner-Schwabe R, Yang JJ et al. 2015. Negative feedback–defective PRPS1 mutants drive thiopurine resistance in relapsed childhood ALL. Nat. Med. 21:563–71
    [Google Scholar]
  58. Li JF, Dai YT, Lilljebjorn H, Shen SH, Cui BW et al. 2018. Transcriptional landscape of B cell precursor acute lymphoblastic leukemia based on an international study of 1,223 cases. PNAS 115:E11711–20
    [Google Scholar]
  59. Lilljebjorn H, Henningsson R, Hyrenius-Wittsten A, Olsson L, Orsmark-Pietras C et al. 2016. Identification of ETV6-RUNX1-like and DUX4-rearranged subtypes in paediatric B-cell precursor acute lymphoblastic leukaemia. Nat. Commun. 7:11790
    [Google Scholar]
  60. Lipka DB, Witte T, Toth R, Yang J, Wiesenfarth M et al. 2017. RAS-pathway mutation patterns define epigenetic subclasses in juvenile myelomonocytic leukemia. Nat. Commun. 8:2126
    [Google Scholar]
  61. Liu Y, Easton J, Shao Y, Maciaszek J, Wang Z et al. 2017. The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat. Genet. 49:1211–18
    [Google Scholar]
  62. Ma X, Edmonson M, Yergeau D, Muzny DM, Hampton OA et al. 2015. Rise and fall of subclones from diagnosis to relapse in pediatric B-acute lymphoblastic leukaemia. Nat. Commun. 6:6604
    [Google Scholar]
  63. Maloney KW, Devidas M, Wang C, Mattano LA, Friedmann AM et al. 2020. Outcome in children with standard-risk B-cell acute lymphoblastic leukemia: results of Children's Oncology Group Trial AALL0331. J. Clin. Oncol. 38:602–12
    [Google Scholar]
  64. Mansour MR, Abraham BJ, Anders L, Berezovskaya A, Gutierrez A et al. 2014. An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element. Science 346:1373–77
    [Google Scholar]
  65. Mar BG, Bullinger LB, McLean KM, Grauman PV, Harris MH et al. 2014. Mutations in epigenetic regulators including SETD2 are gained during relapse in paediatric acute lymphoblastic leukaemia. Nat. Commun. 5:3469
    [Google Scholar]
  66. Masetti R, Pigazzi M, Togni M, Astolfi A, Indio V et al. 2013. CBFA2T3-GLIS2 fusion transcript is a novel common feature in pediatric, cytogenetically normal AML, not restricted to FAB M7 subtype. Blood 121:3469–72
    [Google Scholar]
  67. Maude SL, Dolai S, Delgado-Martin C, Vincent T, Robbins A et al. 2015. Efficacy of JAK/STAT pathway inhibition in murine xenograft models of early T-cell precursor (ETP) acute lymphoblastic leukemia. Blood 125:1759–67
    [Google Scholar]
  68. McNeer NA, Philip J, Geiger H, Ries RE, Lavallee VP et al. 2019. Genetic mechanisms of primary chemotherapy resistance in pediatric acute myeloid leukemia. Leukemia 33:1934–43
    [Google Scholar]
  69. Meshinchi S, Alonzo TA, Stirewalt DL, Zwaan M, Zimmerman M et al. 2006. Clinical implications of FLT3 mutations in pediatric AML. Blood 108:3654–61
    [Google Scholar]
  70. Meyer C, Hofmann J, Burmeister T, Groger D, Park TS et al. 2013. The MLL recombinome of acute leukemias in 2013. Leukemia 27:2165–76
    [Google Scholar]
  71. Meyer JA, Wang J, Hogan LE, Yang JJ, Dandekar S et al. 2013. Relapse-specific mutations in NT5C2 in childhood acute lymphoblastic leukemia. Nat. Genet. 45:290–94
    [Google Scholar]
  72. Micol JB, Abdel-Wahab O. 2014. Collaborating constitutive and somatic genetic events in myeloid malignancies: ASXL1 mutations in patients with germline GATA2 mutations. Haematologica 99:201–3
    [Google Scholar]
  73. Moriyama T, Metzger ML, Wu G, Nishii R, Qian M et al. 2015. Germline genetic variation in ETV6 and risk of childhood acute lymphoblastic leukaemia: a systematic genetic study. Lancet Oncol 16:1659–66
    [Google Scholar]
  74. Mullighan CG, Goorha S, Radtke I, Miller CB, Coustan-Smith E et al. 2007. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 446:758–64
    [Google Scholar]
  75. Mullighan CG, Miller CB, Radtke I, Phillips LA, Dalton J et al. 2008a. BCR–ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 453:110–14
    [Google Scholar]
  76. Mullighan CG, Phillips LA, Su X, Ma J, Miller CB et al. 2008b. Genomic analysis of the clonal origins of relapsed acute lymphoblastic leukemia. Science 322:1377–80
    [Google Scholar]
  77. Mullighan CG, Su X, Zhang J, Radtke I, Phillips LA et al. 2009. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N. Engl. J. Med. 360:470–80
    [Google Scholar]
  78. Mullighan CG, Zhang J, Kasper LH, Lerach S, Payne-Turner D et al. 2011. CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature 471:235–39
    [Google Scholar]
  79. Nardi V, Ku N, Frigault MJ, Dubuc AM, Tsai HK et al. 2020. Clinical response to larotrectinib in adult Philadelphia chromosome-like ALL with cryptic ETV6-NTRK3 rearrangement. Blood Adv 4:106–11
    [Google Scholar]
  80. Noetzli L, Lo RW, Lee-Sherick AB, Callaghan M, Noris P et al. 2015. Germline mutations in ETV6 are associated with thrombocytopenia, red cell macrocytosis and predisposition to lymphoblastic leukemia. Nat. Genet. 47:535–38
    [Google Scholar]
  81. Noort S, Zimmermann M, Reinhardt D, Cuccuini W, Pigazzi M et al. 2018. Prognostic impact of t(16;21)(p11;q22) and t(16;21)(q24;q22) in pediatric AML: a retrospective study by the I-BFM Study Group. Blood 132:1584–92
    [Google Scholar]
  82. Noris P, Perrotta S, Seri M, Pecci A, Gnan C et al. 2011. Mutations in ANKRD26 are responsible for a frequent form of inherited thrombocytopenia: analysis of 78 patients from 21 families. Blood 117:6673–80
    [Google Scholar]
  83. Ohki K, Kiyokawa N, Saito Y, Hirabayashi S, Nakabayashi K et al. 2019. Clinical and molecular characteristics of MEF2D fusion-positive B-cell precursor acute lymphoblastic leukemia in childhood, including a novel translocation resulting in MEF2D-HNRNPH1 gene fusion. Haematologica 104:128–37
    [Google Scholar]
  84. Ostergaard P, Simpson MA, Connell FC, Steward CG, Brice G et al. 2011. Mutations in GATA2 cause primary lymphedema associated with a predisposition to acute myeloid leukemia (Emberger syndrome). Nat. Genet. 43:929–31
    [Google Scholar]
  85. Pabst T, Eyholzer M, Haefliger S, Schardt J, Mueller BU 2008. Somatic CEBPA mutations are a frequent second event in families with germline CEBPA mutations and familial acute myeloid leukemia. J. Clin. Oncol. 26:5088–93
    [Google Scholar]
  86. Palomero T, Lim WK, Odom DT, Sulis ML, Real PJ et al. 2006. NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. PNAS 103:18261–66
    [Google Scholar]
  87. Palomero T, Sulis ML, Cortina M, Real PJ, Barnes K et al. 2007. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat. Med. 13:1203–10
    [Google Scholar]
  88. Papaemmanuil E, Hosking FJ, Vijayakrishnan J, Price A, Olver B et al. 2009. Loci on 7p12.2, 10q21.2 and 14q11.2 are associated with risk of childhood acute lymphoblastic leukemia. Nat. Genet. 41:1006–10
    [Google Scholar]
  89. Passet M, Boissel N, Sigaux F, Saillard C, Bargetzi M et al. 2019. PAX5 P80R mutation identifies a novel subtype of B-cell precursor acute lymphoblastic leukemia with favorable outcome. Blood 133:280–84
    [Google Scholar]
  90. Patrick K, Wade R, Goulden N, Mitchell C, Moorman AV et al. 2014. Outcome for children and young people with Early T-cell precursor acute lymphoblastic leukaemia treated on a contemporary protocol, UKALL 2003. Br. J. Haematol. 166:421–24
    [Google Scholar]
  91. Perez-Andreu V, Roberts KG, Harvey RC, Yang W, Cheng C et al. 2013. Inherited GATA3 variants are associated with Ph-like childhood acute lymphoblastic leukemia and risk of relapse. Nat. Genet. 45:1494–98
    [Google Scholar]
  92. Perez Botero J, Oliveira JL, Chen D, Reichard KK, Viswanatha DS et al. 2015. ASXL1 mutated chronic myelomonocytic leukemia in a patient with familial thrombocytopenia secondary to germline mutation in ANKRD26. . Blood Cancer J 5:e315
    [Google Scholar]
  93. Pouliot GP, Degar J, Hinze L, Kochupurakkal B, Vo CD et al. 2019. Fanconi-BRCA pathway mutations in childhood T-cell acute lymphoblastic leukemia. PLOS ONE 14:e0221288
    [Google Scholar]
  94. Qian M, Xu H, Perez-Andreu V, Roberts KG, Zhang H et al. 2019a. Novel susceptibility variants at the ERG locus for childhood acute lymphoblastic leukemia in Hispanics. Blood 133:724–29
    [Google Scholar]
  95. Qian M, Zhang H, Kham SK, Liu S, Jiang C et al. 2017. Whole-transcriptome sequencing identifies a distinct subtype of acute lymphoblastic leukemia with predominant genomic abnormalities of EP300 and CREBBP. . Genome Res 27:185–95
    [Google Scholar]
  96. Qian M, Zhao X, Devidas M, Yang W, Gocho Y et al. 2019b. Genome-wide association study of susceptibility loci for T-cell acute lymphoblastic leukemia in children. J. Natl. Cancer Inst. 111:1350–57
    [Google Scholar]
  97. Qin H, Cho M, Haso W, Zhang L, Tasian SK et al. 2015. Eradication of B-ALL using chimeric antigen receptor-expressing T cells targeting the TSLPR oncoprotein. Blood 126:629–39
    [Google Scholar]
  98. Radtke I, Mullighan CG, Ishii M, Su X, Cheng J et al. 2009. Genomic analysis reveals few genetic alterations in pediatric acute myeloid leukemia. PNAS 106:12944–49
    [Google Scholar]
  99. Rafei H, DiNardo CD. 2019. Hereditary myeloid malignancies. Best Pract. Res. Clin. Haematol. 32:163–76
    [Google Scholar]
  100. Reiman A, Srinivasan V, Barone G, Last JI, Wootton LL et al. 2011. Lymphoid tumours and breast cancer in ataxia telangiectasia; substantial protective effect of residual ATM kinase activity against childhood tumours. Br. J. Cancer 105:586–91
    [Google Scholar]
  101. Rio-Machin A, Gomez-Lopez G, Munoz J, Garcia-Martinez F, Maiques-Diaz A et al. 2017. The molecular pathogenesis of the NUP98-HOXA9 fusion protein in acute myeloid leukemia. Leukemia 31:2000–5
    [Google Scholar]
  102. Roberts KG, Janke LJ, Zhao Y, Seth A, Ma J et al. 2018. ETV6-NTRK3 induces aggressive acute lymphoblastic leukemia highly sensitive to selective TRK inhibition. Blood 132:861–65
    [Google Scholar]
  103. Roberts KG, Li Y, Payne-Turner D, Harvey RC, Yang YL et al. 2014. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N. Engl. J. Med. 371:1005–15
    [Google Scholar]
  104. Roberts KG, Mullighan CG. 2019. The biology of B-progenitor acute lymphoblastic leukemia. Cold Spring Harb. Perspect. Med. 10:7a034835
    [Google Scholar]
  105. Roberts KG, Yang YL, Payne-Turner D, Lin W, Files JK et al. 2017. Oncogenic role and therapeutic targeting of ABL-class and JAK-STAT activating kinase alterations in Ph-like ALL. Blood Adv 1:1657–71
    [Google Scholar]
  106. Rubnitz JE, Inaba H, Dahl G, Ribeiro RC, Bowman WP et al. 2010. Minimal residual disease-directed therapy for childhood acute myeloid leukaemia: results of the AML02 multicentre trial. Lancet Oncol 11:543–52
    [Google Scholar]
  107. Rubnitz JE, Lacayo NJ, Inaba H, Heym K, Ribeiro RC et al. 2019. Clofarabine can replace anthracyclines and etoposide in remission induction therapy for childhood acute myeloid leukemia: the AML08 multicenter, randomized phase III trial. J. Clin. Oncol. 37:2072–81
    [Google Scholar]
  108. Sakurai M, Kunimoto H, Watanabe N, Fukuchi Y, Yuasa S et al. 2014. Impaired hematopoietic differentiation of RUNX1-mutated induced pluripotent stem cells derived from FPD/AML patients. Leukemia 28:2344–54
    [Google Scholar]
  109. Schuback HL, Arceci RJ, Meshinchi S 2013. Somatic characterization of pediatric acute myeloid leukemia using next-generation sequencing. Semin. Hematol. 50:325–32
    [Google Scholar]
  110. Schultz KR, Devidas M, Bowman WP, Aledo A, Slayton WB et al. 2014. Philadelphia chromosome-negative very high-risk acute lymphoblastic leukemia in children and adolescents: results from Children's Oncology Group Study AALL0031. Leukemia 28:964–67
    [Google Scholar]
  111. Schwartz JR, Ma J, Lamprecht T, Walsh M, Wang S et al. 2017. The genomic landscape of pediatric myelodysplastic syndromes. Nat. Commun. 8:1557
    [Google Scholar]
  112. Shago M, Abla O, Hitzler J, Weitzman S, Abdelhaleem M 2016. Frequency and outcome of pediatric acute lymphoblastic leukemia with ZNF384 gene rearrangements including a novel translocation resulting in an ARID1B/ZNF384 gene fusion. Pediatr. Blood Cancer 63:1915–21
    [Google Scholar]
  113. Shah S, Schrader KA, Waanders E, Timms AE, Vijai J et al. 2013. A recurrent germline PAX5 mutation confers susceptibility to pre-B cell acute lymphoblastic leukemia. Nat. Genet. 45:1226–31
    [Google Scholar]
  114. Shlush LI, Mitchell A, Heisler L, Abelson S, Ng SWK et al. 2017. Tracing the origins of relapse in acute myeloid leukaemia to stem cells. Nature 547:104–8
    [Google Scholar]
  115. Smith JL, Ries RE, Hylkema T, Alonzo TA, Gerbing RB et al. 2020. Comprehensive transcriptome profiling of cryptic CBFA2T3-GLIS2 fusion-positive AML defines novel therapeutic options: a COG and TARGET pediatric AML study. Clin. Cancer Res. 26:726–37
    [Google Scholar]
  116. Sotoca AM, Prange KH, Reijnders B, Mandoli A, Nguyen LN et al. 2016. The oncofusion protein FUS-ERG targets key hematopoietic regulators and modulates the all-trans retinoic acid signaling pathway in t(16;21) acute myeloid leukemia. Oncogene 35:1965–76
    [Google Scholar]
  117. Spinner MA, Sanchez LA, Hsu AP, Shaw PA, Zerbe CS et al. 2014. GATA2 deficiency: a protean disorder of hematopoiesis, lymphatics, and immunity. Blood 123:809–21
    [Google Scholar]
  118. Stanulla M, Dagdan E, Zaliova M, Moricke A, Palmi C et al. 2018. IKZF1plus defines a new minimal residual disease–dependent very-poor prognostic profile in pediatric B-cell precursor acute lymphoblastic leukemia. J. Clin. Oncol. 36:1240–49
    [Google Scholar]
  119. Stieglitz E, Mazor T, Olshen AB, Geng H, Gelston LC et al. 2017. Genome-wide DNA methylation is predictive of outcome in juvenile myelomonocytic leukemia. Nat. Commun. 8:2127
    [Google Scholar]
  120. Stieglitz E, Taylor-Weiner AN, Chang TY, Gelston LC, Wang YD et al. 2015. The genomic landscape of juvenile myelomonocytic leukemia. Nat. Genet. 47:1326–33
    [Google Scholar]
  121. Strullu M, Caye A, Lachenaud J, Cassinat B, Gazal S et al. 2014. Juvenile myelomonocytic leukaemia and Noonan syndrome. J. Med. Genet. 51:689–97
    [Google Scholar]
  122. Struski S, Lagarde S, Bories P, Puiseux C, Prade N et al. 2017. NUP98 is rearranged in 3.8% of pediatric AML forming a clinical and molecular homogenous group with a poor prognosis. Leukemia 31:565–72
    [Google Scholar]
  123. Takahashi K, Wang F, Morita K, Yan Y, Hu P et al. 2018. Integrative genomic analysis of adult mixed phenotype acute leukemia delineates lineage associated molecular subtypes. Nat. Commun. 9:2670
    [Google Scholar]
  124. Tanasi I, Ba I, Sirvent N, Braun T, Cuccuini W et al. 2019. Efficacy of tyrosine kinase inhibitors in Ph-like acute lymphoblastic leukemia harboring ABL-class rearrangements. Blood 134:1351–55
    [Google Scholar]
  125. Tarlock K, Alonzo TA, Moraleda PP, Gerbing RB, Raimondi SC et al. 2014. Acute myeloid leukaemia (AML) with t(6;9)(p23;q34) is associated with poor outcome in childhood AML regardless of FLT3-ITD status: a report from the Children's Oncology Group. Br. J. Haematol. 166:254–59
    [Google Scholar]
  126. Tarlock K, Meshinchi S. 2015. Pediatric acute myeloid leukemia: biology and therapeutic implications of genomic variants. Pediatr. Clin. North Am. 62:75–93
    [Google Scholar]
  127. Tasian SK, Doral MY, Borowitz MJ, Wood BL, Chen IM et al. 2012. Aberrant STAT5 and PI3K/mTOR pathway signaling occurs in human CRLF2-rearranged B-precursor acute lymphoblastic leukemia. Blood 120:833–42
    [Google Scholar]
  128. Tawana K, Rio-Machin A, Preudhomme C, Fitzgibbon J 2017. Familial CEBPA-mutated acute myeloid leukemia. Semin. Hematol. 54:87–93
    [Google Scholar]
  129. Tawana K, Wang J, Renneville A, Bodor C, Hills R et al. 2015. Disease evolution and outcomes in familial AML with germline CEBPA mutations. Blood 126:1214–23
    [Google Scholar]
  130. Trevino LR, Yang W, French D, Hunger SP, Carroll WL et al. 2009. Germline genomic variants associated with childhood acute lymphoblastic leukemia. Nat. Genet. 41:1001–5
    [Google Scholar]
  131. von Neuhoff C, Reinhardt D, Sander A, Zimmermann M, Bradtke J et al. 2010. Prognostic impact of specific chromosomal aberrations in a large group of pediatric patients with acute myeloid leukemia treated uniformly according to trial AML-BFM 98. J. Clin. Oncol. 28:2682–89
    [Google Scholar]
  132. Waanders E, Gu Z, Dobson SM, Antić Ž, Crawford JC et al. 2020. Mutational landscape and patterns of clonal evolution in relapsed pediatric acute lymphoblastic leukemia. Blood Cancer Discov 1:196–111
    [Google Scholar]
  133. Ward E, DeSantis C, Robbins A, Kohler B, Jemal A 2014. Childhood and adolescent cancer statistics, 2014. CA Cancer J. Clin. 64:83–103
    [Google Scholar]
  134. Weng AP, Ferrando AA, Lee W, JPt Morris, Silverman LB et al. 2004. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306:269–71
    [Google Scholar]
  135. Weston BW, Hayden MA, Roberts KG, Bowyer S, Hsu J et al. 2013. Tyrosine kinase inhibitor therapy induces remission in a patient with refractory EBF1-PDGFRB–positive acute lymphoblastic leukemia. J. Clin. Oncol. 31:e413–16
    [Google Scholar]
  136. Wiemels JL, Cazzaniga G, Daniotti M, Eden OB, Addison GM et al. 1999. Prenatal origin of acute lymphoblastic leukaemia in children. Lancet 354:1499–503
    [Google Scholar]
  137. Wiemels JL, Xiao Z, Buffler PA, Maia AT, Ma X et al. 2002. In utero origin of t(8;21) AML1-ETO translocations in childhood acute myeloid leukemia. Blood 99:3801–5
    [Google Scholar]
  138. Winer P, Muskens IS, Walsh KM, Vora A, Moorman AV et al. 2020. Germline variants in predisposition genes in children with Down syndrome and acute lymphoblastic leukemia. Blood Adv 4:672–75
    [Google Scholar]
  139. Winter SS, Dunsmore KP, Devidas M, Wood BL, Esiashvili N et al. 2018. Improved survival for children and young adults with T-lineage acute lymphoblastic leukemia: results from the Children's Oncology Group AALL0434 methotrexate randomization. J. Clin. Oncol. 36:2926–34
    [Google Scholar]
  140. Xu H, Valerio DG, Eisold ME, Sinha A, Koche RP et al. 2016. NUP98 fusion proteins interact with the NSL and MLL1 complexes to drive leukemogenesis. Cancer Cell 30:863–78
    [Google Scholar]
  141. Yang JJ, Cheng C, Devidas M, Cao X, Fan Y et al. 2011. Ancestry and pharmacogenomics of relapse in acute lymphoblastic leukemia. Nat. Genet. 43:237–41
    [Google Scholar]
  142. Yang JJ, Landier W, Yang W, Liu C, Hageman L et al. 2015. Inherited NUDT15 variant is a genetic determinant of mercaptopurine intolerance in children with acute lymphoblastic leukemia. J. Clin. Oncol. 33:1235–42
    [Google Scholar]
  143. Yasuda T, Tsuzuki S, Kawazu M, Hayakawa F, Kojima S et al. 2016. Recurrent DUX4 fusions in B cell acute lymphoblastic leukemia of adolescents and young adults. Nat. Genet. 48:569–74
    [Google Scholar]
  144. Yui MA, Rothenberg EV. 2014. Developmental gene networks: a triathlon on the course to T cell identity. Nat. Rev. Immunol. 14:529–45
    [Google Scholar]
  145. Zenatti PP, Ribeiro D, Li W, Zuurbier L, Silva MC et al. 2011. Oncogenic IL7R gain-of-function mutations in childhood T-cell acute lymphoblastic leukemia. Nat. Genet. 43:932–39
    [Google Scholar]
  146. Zhang J, Ding L, Holmfeldt L, Wu G, Heatley SL et al. 2012. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 481:157–63
    [Google Scholar]
  147. Zhang J, McCastlain K, Yoshihara H, Xu B, Chang Y et al. 2016. Deregulation of DUX4 and ERG in acute lymphoblastic leukemia. Nat. Genet. 48:1481–89
    [Google Scholar]
  148. Zhang J, Walsh MF, Wu G, Edmonson MN, Gruber TA et al. 2015. Germline mutations in predisposition genes in pediatric cancer. N. Engl. J. Med. 373:2336–46
    [Google Scholar]
  149. Zwaan CM, Kolb EA, Reinhardt D, Abrahamsson J, Adachi S et al. 2015. Collaborative efforts driving progress in pediatric acute myeloid leukemia. J. Clin. Oncol. 33:2949–62
    [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-043020-110055
Loading
/content/journals/10.1146/annurev-cancerbio-043020-110055
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error