Skip to main content

Advertisement

Log in

Preparation of calcium ferrite by flue gas desulfurization gypsum

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

At present, the continuous accumulation of the flue gas desulfurization (FGD) gypsum in steel plants leads to the serious environmental issues and resource waste. To achieve green and sustainable development for the steel industry, it is significant to improve the usage of by-product gypsum. Employing the sintering FGD gypsum, ferric oxide, and graphite carbon as raw materials, the effects of the carbon content, reaction time, and molar ratio of CaO to Fe2O3 on the desulfurization rate of gypsum were studied based on the orthogonal experiment. The results show that the order of the three influencing factors on the desulfurization rate of FGD gypsum is: molar ratio of CaO to Fe2O3 > reaction time > carbon content. Under the optimal conditions of 20 wt.% carbon content, 4 h reaction time, and 1:1 molar ratio of CaO to Fe2O3, the desulfurization rate of desulfurization gypsum is 95.79%, and 97.57 wt.% of calcium ferrite appears in the solid product, which can be used as sintering additive to increase the economic benefits of enterprises and realize the green ecological development mode of internal generation and internal digestion of solid waste in iron and steel enterprises.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.C. Sun, South. Met. 6 (2018) No. 6, 21–23. https://doi.org/10.3969/j.issn.1009-9700.2018.06.006.

  2. S.B. Yu, S. Chen, J.F. Su, B. Zhang, Metallurgical Equipment (2018) No. 2, 75–80. https://doi.org/10.3969/j.issn.1001-1269.2018.02.017.

  3. C.H. Zheng, Y.P. Hong, Z.W. Xu, C.J. Li, L. Wang, Z.D. Yang, Y.X. Zhang, X. Gao, Energy Fuels 32 (2018) 6031–6038.

  4. J. Jia, S.Y. Cheng, S. Yao, T.B. Xu, T.T. Zhang, Y.T. Ma, H.L. Wang, W.J. Duan, Atmos. Environ. 182 (2018) 115–127.

  5. N.H. Koralegedara, P.X. Pinto, D.D. Dionysiou, S.R. Al-Abed, J. Environ. Manag. 251 (2019) 109572.

  6. S. Wu, W.L. Wang, C.Z. Ren, X.L. Yao, Y.G. Yao, Q.S. Zhang, Z.F. Li, Constr. Build. Mater. 228 (2019) 116676.

  7. Z.L. Qiao, X.C. Wang, H. Gu, Y.F. Tang, F.Q. Si, C.E. Romero, X.Z. Yao, Fuel 258 (2019) 116178.

  8. L. Zhou, Y. Liu, L.Y. Luo, Z.L. Yuan, L.J. Yang, H. Wu, J. Environ. Sci. 80 (2019) 35–44.

  9. C. Niyungeko, X.Q. Liang, S.D. Shan, J. Zhang, B.M. Tiimub, H. SeyedHamid, S. Khan, L. Fa-yong, G.M. Tian, Chemosphere 234 (2019) 953–961.

  10. Z. Chen, C.F. You, H.Z. Liu, H.M. Wang, Fuel Process. Technol. 179 (2018) 344–350.

  11. H.I. Abdel-Shafy, M.S.M. Mansour, Egypt. J. Petrol. 27 (2018) 1275–1290.

  12. H.X. Li, H. Zhang, L. Li, Q. Ren, X.J. Yang, Z.W. Jiang, Z.L. Zhang, Fuel 255 (2019) 115783.

  13. H. Wu, D.P. Pan, R.T. Huang, G.X. Hong, B. Yang, Z.M. Peng, L.J. Yang, Energy Fuels 30 (2016) 6103–6109.

  14. J. Zhao, H. Su, H.B. Zuo, J.S. Wang, Q.G. Xue, J. Clean. Prod. 267 (2020) 122002.

  15. W.M. Song, J.N. Zhou, B. Wang, S. Li, R.J. Cheng, Ind. Eng. Chem. Res. 58 (2019) 20450–20460.

  16. X.L. Yao, W.L. Wang, M. Liu, Y.G. Yao, S. Wu, J. Clean. Prod. 211 (2019) 1034–1043.

  17. H. Tan, X. Zhang, X.Y. He, Y.L. Guo, X.F. Deng, Y. Su, J. Yang, Y.B. Wang, J. Clean. Prod. 205 (2018) 536–551.

  18. R. Zhang, H. Wu, X.D. Si, L.L. Zhao, L.J. Yang, Fuel Process. Technol. 174 (2018) 9–16.

  19. L.H. Jiang, C.Z. Li, C. Wang, N. Xu, H.Q. Chu, J. Clean. Prod. 205 (2018) 589–598.

  20. J. Zhou, X.Q. Li, Y. Zhao, Z. Shu, Y.X. Wang, Y. Zhang, X. Shen, Constr. Build. Mater. 243 (2020) 118091

  21. Y.T. Ma, Q.K. Nie, R. Xiao, W. Hu, B.Y. Han, P.A. Polaczyk, B.S. Huang, Constr. Build. Mater. 245 (2020) 118393.

  22. J. Gao, Q. Li, F.L. Liu, Chin. J. Chem. Eng. 28 (2020) 2221–2226.

  23. S. Shao, B.Z. Ma, Y.Q. Chen, W.J. Zhang, B. Liu, P. Xing, C.Y. Wang, Chin. J. Chem. Eng. 28 (2020) 1752–1754.

  24. Q.J. Guan, W. Sun, C.P. Guan, W.J. Yu, X.N. Zhu, S.A. Khoso, P. Wang, W.Q. Peng, J. Cent. South Univ. 26 (2019) 3213–3224.

  25. W.L. Teng, J.S. Wang, J.S. Wu, Y.C. Du, X.J. Jia, H.Y. Li, T.N. Wang, J. Cryst. Growth 496–497 (2018) 24–30.

  26. A.G. Zhang, L. Mu, S.B. Wang, Inorganic Chemicals Industry 51 (2019) No. 1, 62–66.

  27. H. Su, H.B. Zuo, J. Zhao, Inorganic Chemicals Industry 51 (2019) No. 7, 68–73.

  28. K. Higuchi, A. Gushima, T. Ikeda, ISIJ Int. 56 (2016) 168–175.

Download references

Acknowledgements

This work was financially supported by Fundamental Research Funds for the Central Universities (FRF-MP-20-018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-bin Zuo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Lc., Zuo, Hb., Liu, Wg. et al. Preparation of calcium ferrite by flue gas desulfurization gypsum. J. Iron Steel Res. Int. 28, 1357–1365 (2021). https://doi.org/10.1007/s42243-021-00571-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00571-9

Keywords

Navigation