Skip to main content
Log in

Immobilization of Rhenium as a Technetium Surrogate in Aluminum Iron Phosphate Glass

  • Published:
Radiochemistry Aims and scope

Abstract

Samples of sodium aluminum iron phosphate glass were synthesized containing rhenium as a surrogate of technetium from radioactive waste. The phase composition, structure and water resistance of the obtained glasses were investigated. It was shown that the samples with the rhenium oxide inclusion up to 2.88 wt % are X-ray amorphous and homogeneous, and their anionic motif corresponds to the glassy one. It was found that the oxidation state of rhenium in the obtained glasses is Re(VII), and 97% of iron is in the form of Fe(III) and 3% in the form of Fe(II). The glass was established to be highly resistant to leaching at 90°C. The rate of Re leaching from glasses in accordance with the international product consistency test (PCT) and the semi-dynamic test of State Standard GOST R 52126-2003 is no more than 6  ×  10–6 and 3  ×  10–6 g/(cm2 day), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Spitsyn, V.I. and Kuzina, A.F., Tekhnetsii, Moscow: Nauka, 1981.

    Google Scholar 

  2. Soderquist, Ch.Z., Schweiger, M.J., Kim, D.S., Lukens, W.W., and McCloy, J.S., J. Nucl. Mater., 2014, vol. 449, p. 173.

    Article  CAS  Google Scholar 

  3. Stefanovskii, S.V., Stefanovskaya, O.I., Vinokurov, S.E., Danilov, S.S., and Myasoedov, B.F., Radiochemistry, 2015, vol. 57, no. 4, p. 295. https://doi.org/10.1134/S1066362215040037

    Article  CAS  Google Scholar 

  4. Danilov, S.S., Stefanovsky, S.V., Stefanovskaya, O.I., Vinokurov, S.E., Myasoedov, B.F., and Teterin, Yu.A., Radiochemistry, 2018, vol. 60, no. 4, p. 434. https://doi.org/10.1134/S1066362218040136

    Article  CAS  Google Scholar 

  5. Stefanovskii, S.V., Maslakov, K.I., Teterin, Yu.A., Kalmykov, S.N., Danilov, S.S., Teterin, A.Yu., and Ivanov, K.E., Dokl. Akad. Nauk, 2018, vol. 478, no. 2, p. 175.

    Google Scholar 

  6. Stefanovskii, S.V., Stefanovskaya, O.I., Semenova, D.V., Kadyko, M.I., and Danilov, S.S., Steklo Keramika, 2018, no. 3, p. 9.

    Google Scholar 

  7. Stefanovsky, S.V., Sefanovsky, O.I., Myasoedov, B.F, Vinokurov, S.E., Danilov, S.S., Nikonov, B.S., Maslakov, K.I., and Teterin, Yu.A., J. Non-Cryst. Solids, 2017, vol. 471, p. 421.

    Article  CAS  Google Scholar 

  8. Maslakov, K.I., Teterin, Yu.A., Stefanovsky, S.V., Kalmykov, S.N., Teterin, A.Yu., Ivanov, K.E., and Danilov, S.S., J. Non-Cryst. Solids, 2018, vol. 482, p. 23.

    Article  CAS  Google Scholar 

  9. Mysen, B.O., Finger, L.W., Virgo, D., and Seifert, F.A., Am. Mineral., 1982, vol. 67, nos. 7–8, p. 686.

    CAS  Google Scholar 

  10. Shirley, D.A., Phys. Rev. B, 1972, vol. 5, no. 12, p. 4709.

    Article  Google Scholar 

  11. ASTM Standard C 1285-94, Standard Test Methods for Determining Chemical Durability of Nuclear Waste Glasses: The Product Consistency Test (PCT), Philadelphia: ASTM, 1994.

  12. GOST R 52126–2003. Otkhody radioaktivnye. Opredelenie khimicheskoi ustoichivosti otverzhdennykh vysokoaktivnykh otkhodov metodom dlitel’nogo vyshchelachivaniya (Radioactive waste. Determination of the chemical stability of solidified high-level waste by the long-term leaching method), Moscow: Gosstandart Rossii, 2003.

  13. De Groot, G.J. and Van der Sloot, H.A., Stabilization and Solidification of Hazardous, Radioactive and Mixed Wastes, Gilliam, T.M. and Wiles, C.C., Philadelphia: ASTM, 1992.

    Google Scholar 

  14. Lazarev, A.N., Mirgorodskii, A.P., and Ignat’ev, I.S., Kolebatel’nye spektry slozhnykh okislov (Vibrational Spectra of Complex Oxides.), Leningrad: Nauka, 1975.

    Google Scholar 

  15. Plyusnina, I.I., Infrakrasnye spektry mineralov (Infrared Spectra of Minerals), Moscow: Izd. Mosk. Iniv, 1977.

    Google Scholar 

  16. Naumkin, A., Kraut-Vass, A., Gaarenstroom, S., and Powell, C., NIST X-ray Photoelectron Spectroscopy Database, US Secretary of Commerce, 2012. https://srdata.nist.gov/xps/Default.aspx.

  17. Thorn, R.J., Carlson, K.D., Crabtree, G.W., and Wang, H.H., J. Phys. C: Solid State Phys., 1985, vol. 18, no. 28, p. 5501.

    Article  Google Scholar 

  18. Maslakov, K.I., Teterin, Yu.A., Stefanovsky, S.V., Kalmykov, S.N., Teterin, A.Yu., and Ivanov, K.E., J. Alloys Compd., 2017, vol. 712, p. 36.

    Article  CAS  Google Scholar 

  19. Laverov, N.P., Yudintsev, S.V., and Omel’yanenko, B.I., Geologiya rudn. mestorozhdenii, 2009, vol. 51, no. 4, p. 291.

    CAS  Google Scholar 

  20. Pirlet, V., Lemmens, K., and Van Iseghem, P., Proc. Scientific Basis for Nuclear Waste Management XXVII, Warrendale: MRS, 2004, vol. 824, p. 385.

    CAS  Google Scholar 

  21. Vlasova,, N.V., Remizov, M.B., Kozlov, P.V., and Belanova, E.A., Vopr. Radiats. Bezopasnosti, 2017, no. 3, p. 32.

    Google Scholar 

  22. Frugier, P., Gin, S., Minet, Y., Chave, T., Bonin, B., Gordon, N., Lartigue J.-E., Jollivet, P., Ayral, A., De Windt, L., and Santarini, G., J. Nucl. Mater., 2008, vol. 380, p. 8.

    Article  CAS  Google Scholar 

  23. NP-019-15: Federal’nye normy i pravila v oblasti ispol’zovaniya atomnoi energii. Sbor, pererabotka, khranenie i konditsionirovanie zhidkikh radioaktivnykh otkhodov (NP-019-15: Federal Norms and Rules in the Field the Use of Atomic Energy. Collection, Treating, Storage, and Conditioning of liquid radioactive waste. Safety Requirements), Rostekhnadzor, 2015.

  24. Al-Abed, S.R., Hageman, P.L., Jegadeesan, G., Madhavan, N., and Allen, D., Sci. Total Environ., 2006, vol. 364, p. 14.

    Article  CAS  Google Scholar 

  25. Moon, D.H. and Dermatas, D., Eng. Geol., 2006, vol. 85, p. 67.

    Article  Google Scholar 

  26. Torras, J., Buj, I., Rovira, M., and de Pablo, J., J. Hazard. Mater., 2011, vol. 186, p. 1954.

    Article  CAS  Google Scholar 

  27. Frugier, P., Gin, S., Minet, Y., Chave, T., Bonin, B., Gordon, N., Lartigue, J.-E., Jollivet, P., Ayral, A., De Windt, L., and Santarini, G., J. Nucl. Mater., 2008, vol. 380, p. 8.

    Article  CAS  Google Scholar 

  28. Martynov, K.V., Konstantinova, L.I., and Zakharova, E.V., Vopr. Radiats. Bezopasnosti, 2015, no. 4, p. 10.

    Google Scholar 

Download references

Funding

The research was carried out within the framework of the state assignment of the GEOKHI RAS (0137-2019-0022). The studies used equipment purchased at the expense of the Development Program of the Moscow State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Danilov.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 6, pp. 512–518, December, 2020 https://doi.org/10.31857/S0033831120060076

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danilov, S.S., Frolova, A.V., Kulikova, S.A. et al. Immobilization of Rhenium as a Technetium Surrogate in Aluminum Iron Phosphate Glass. Radiochemistry 63, 99–106 (2021). https://doi.org/10.1134/S106636222101015X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106636222101015X

Keywords:

Navigation