Skip to main content

Advertisement

Log in

Cost-effective, environmentally-sustainable and scale-up synthesis of vertically oriented graphenes from waste oil and its supercapacitor applications

  • Research Article
  • Published:
Waste Disposal & Sustainable Energy Aims and scope Submit manuscript

Abstract

Vertically oriented graphenes (VGs) have attracted tremendous attention in a variety of energy storage-related applications. However, the high cost of preparing VGs significantly hinders their practical applications. Herein we introduce the Ar-plasma-enhanced chemical vapor deposition to demonstrate the cost-effective, environmentally-sustainable, and scale-up synthesis of VGs from waste oil. In our system, Ar gas can improve the electron energy and ionization rate of plasma, which breaks down the chemical bonding of waste oil into essential species to etch the amorphous carbon, yielding large-area VGs (12 × 3.5 cm2) with highly-oriented structure and superior growth efficiency beyond VGs from hydrocarbon precursors. In the supercapacitor applications, the VG-based electrode exhibits significantly enhanced capacitance (~4 times that from conventional hydrocarbon gases) and efficient AC (alternating current) filtering capability RC (resistor-capacitor) (time constant of of 163 μs at 120 Hz), which is obviously superior to the non-oriented counterpart. Besides, MnO2/VGs composite electrode is prepared to deliver a maximum energy density of ~33.2 Wh/kg at 1.0 kW/kg and a power density of 10.2 kW/kg at 22.9 Wh/kg. In the end, the economic analysis suggests that the total cost of VGs can be reduced by ~32%. This work provides an environment-friendly and low-cost avenue for preparing VGs for advanced energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liu, C., Yu, Z., Neff, D., et al. 2010. Graphene-based supercapacitor with an ultrahigh energy density. Nano Letters 10 (12): 4863–4868. https://doi.org/10.1021/nl102661q.

    Article  CAS  Google Scholar 

  2. Bo, Z., Mao, S., Han, Z.J., et al. 2015. Emerging energy and environmental applications of vertically-oriented graphenes. Chemical Society Reviews 44 (8): 2108–2121. https://doi.org/10.1039/c4cs00352g.

    Article  CAS  Google Scholar 

  3. Vesel, A., Zaplotnik, R., Primc, G., et al. 2019. Synthesis of vertically oriented graphene sheets or carbon nanowalls-review and challenges. Materials (Basel) 12(18): 2968. https://doi.org/10.3390/ma12182968.

    Article  CAS  Google Scholar 

  4. Yeh, N.C., Hsu, C.C., Bagley, J., et al. 2019. Single-step growth of graphene and graphene-based nanostructures by plasma-enhanced chemical vapor deposition. Nanotechnology 30(16): 162001. https://doi.org/10.1088/1361-6528/aafdbf.

    Article  CAS  Google Scholar 

  5. Yang, H., Zhang, X., Yang, J., et al. 2017. Molecular origin of electric double-layer capacitance at multilayer graphene edges. The Journal of Physical Chemistry Letters 8 (1): 153–160. https://doi.org/10.1021/acs.jpclett.6b02659.

    Article  CAS  Google Scholar 

  6. Yang, H., Yang, J., Bo, Z., et al. 2016. Edge effects in vertically-oriented graphene based electric double-layer capacitors. Journal of Power Sources. 324: 309–316. https://doi.org/10.1016/j.jpowsour.2016.05.072.

    Article  CAS  Google Scholar 

  7. Seo, D.H., Pineda, S., Fang, J., et al. 2017. Single-step ambient-air synthesis of graphene from renewable precursors as electrochemical genosensor. Nature Communications 8: 14217. https://doi.org/10.1038/ncomms14217.

    Article  CAS  Google Scholar 

  8. Bo, Z., Ying, C., Yang, H., et al. 2020. Highly thermo-conductive three-dimensional graphene aqueous medium. Nano-Micro Letters 12: 138. https://doi.org/10.1007/s40820-020-00478-2.

    Article  CAS  Google Scholar 

  9. Miller, J.R., Outlaw, R.A., and Holloway, B.C. 2010. Graphene double-layer capacitor with ac line-filtering performance. Science 329 (5999): 1637–1639. https://doi.org/10.1126/science.1194372.

    Article  CAS  Google Scholar 

  10. Ando, Y., Zhao, X., and Ohkohchi, M. 1997. Production of petal-like graphite sheets by hydrogen arc discharge. Carbon 35 (1): 153–158. https://doi.org/10.1016/s0008-6223(96)00139-x.

    Article  CAS  Google Scholar 

  11. Hiramatsu, M., Shiji, K., Amano, H., et al. 2004. Fabrication of vertically aligned carbon nanowalls using capacitively coupled plasma-enhanced chemical vapor deposition assisted by hydrogen radical injection. Applied Physics Letters 84 (23): 4708–4710. https://doi.org/10.1063/1.1762702.

    Article  CAS  Google Scholar 

  12. Bo, Z., Wen, Z., Kim, H., et al. 2012. One-step fabrication and capacitive behavior of electrochemical double layer capacitor electrodes using vertically-oriented graphene directly grown on metal. Carbon 50 (12): 4379–4387. https://doi.org/10.1016/j.carbon.2012.05.014.

    Article  CAS  Google Scholar 

  13. Wang, J., Zhu, M., Outlaw, R.A., et al. 2004. Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition. Carbon 42 (14): 2867–2872. https://doi.org/10.1016/j.carbon.2004.06.035.

    Article  CAS  Google Scholar 

  14. Chuang, A.T.H., Boskovic, B.O., and Robertson, J. 2006. Freestanding carbon nanowalls by microwave plasma-enhanced chemical vapour deposition. Diamond and Related Materials 15 (4–8): 1103–1106. https://doi.org/10.1016/j.diamond.2005.11.004.

    Article  CAS  Google Scholar 

  15. Zhu, M., Wang, J., Holloway, B.C., et al. 2007. A mechanism for carbon nanosheet formation. Carbon 45 (11): 2229–2234. https://doi.org/10.1016/j.carbon.2007.06.017.

    Article  CAS  Google Scholar 

  16. Seo, D.H., Rider, A.E., Han, Z.J., et al. 2013. Plasma break-down and re-build: Same functional vertical graphenes from diverse natural precursors. Advanced Materials 25 (39): 5638–5642. https://doi.org/10.1002/adma201301510.

    Article  CAS  Google Scholar 

  17. Sharma, S., Kalita, G., Hirano, R., et al. 2014. Synthesis of graphene crystals from solid waste plastic by chemical vapor deposition. Carbon 72: 66–73. https://doi.org/10.1016/j.carbon.2014.01.051.

    Article  CAS  Google Scholar 

  18. Seo, D.H., Yick, S., Pineda, S., et al. 2015. Single-step, plasma-enabled reforming of natural precursors into vertical graphene electrodes with high areal capacitance. ACS Sustainable Chemistry & Engineering 3 (3): 544–551. https://doi.org/10.1021/sc500806s.

    Article  CAS  Google Scholar 

  19. Kumar, R., Singh, R.K., and Singh, D.P. 2016. Natural and waste hydrocarbon precursors for the synthesis of carbon based nanomaterials: Graphene and CNTs. Renewable and Sustainable Energy Reviews 58: 976–1006. https://doi.org/10.1016/j.rser.2015.12.120.

    Article  CAS  Google Scholar 

  20. Cui, L., Wang, X., Chen, N., et al. 2017. Trash to treasure: Converting plastic waste into a useful graphene foil. Nanoscale 9 (26): 9089–9094. https://doi.org/10.1039/c7nr03580b.

    Article  CAS  Google Scholar 

  21. Wu, A., Li, X., Yang, J., et al. 2017. Upcycling waste lard oil into vertical graphene sheets by inductively coupled plasma assisted chemical vapor deposition. Nanomaterials (Basel) 7 (10): 318. https://doi.org/10.3390/nano7100318.

    Article  Google Scholar 

  22. Wu, A., Yang, J., Li, X., et al. 2017. Synthesis of syngas and carbon nanomaterials by waste rapeseed oil using atmospheric rotating gliding arc. Chemistry Letters 46 (1): 128–130. https://doi.org/10.1246/cl.160829.

    Article  CAS  Google Scholar 

  23. Seo, D.H., Han, Z.J., Kumar, S., et al. 2013. Structure-controlled, vertical graphene-based, binder-free electrodes from plasma-reformed butter enhance supercapacitor performance. Advanced Energy Materials 3 (10): 1316–1323. https://doi.org/10.1002/aenm.201300431.

    Article  CAS  Google Scholar 

  24. Yamabe, C., Buckman, S.J., and Phelps A.V. 1983. Measurement of free-free emission from low-energy-electron collisions with Ar. Physical Review A 27 (3): 1345–1352. https://doi.org/10.1103/PhysRevA.27.1345.

    Article  CAS  Google Scholar 

  25. Lespade, P., Aljishi, R., and Dresselhaus, M.S. 1982. Model for Raman scattering from incompletely graphitized carbons. Carbon 20 (5): 427–431. https://doi.org/10.1016/0008-6223(82)90043-4.

    Article  CAS  Google Scholar 

  26. Niyogi, S., Bekyarova, E., Itkis, M.E., et al. 2010. Spectroscopy of covalently functionalized graphene. Nano Letters 10 (10): 4061–4066. https://doi.org/10.1021/nl1021128.

    Article  CAS  Google Scholar 

  27. Ren, G., Pan, X., Bayne, S., et al. 2014. Kilohertz ultrafast electrochemical supercapacitors based on perpendicularly-oriented graphene grown inside of nickel foam. Carbon 71: 94–101. https://doi.org/10.1016/j.carbon.2014.01.017.

    Article  CAS  Google Scholar 

  28. Pech, D., Brunet, M., Durou, H., et al. 2010. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nature Nanotechnology 5 (9): 651–654. https://doi.org/10.1038/nnano.2010.162.

    Article  CAS  Google Scholar 

  29. Cai, M.Z., Outlaw, R.A., Quinlan, R.A., et al. 2014. Fast response, bertically oriented graphene nanosheet electric double layer capacitors synthesized from C2H2. ACS Nano 8 (6): 5873–5882. https://doi.org/10.1021/nn5009319.

    Article  CAS  Google Scholar 

  30. Yoon, Y., Lee, K., Kwon, S., et al. 2014. Vertical alignments of graphene sheets spatially and densely piled for fast Ion diffusion in compact supercapacitors. ACS Nano 8 (5): 4580–4590. https://doi.org/10.1021/nn500150j.

    Article  CAS  Google Scholar 

  31. Hahm, M.G., Reddy, A.L.M., Cole, D.P., et al. 2012. Carbon nanotube-nanocup hybrid structures for high power supercapacitor applications. Nano Letters 12 (11): 5616–5621. https://doi.org/10.1021/nl3027372.

    Article  CAS  Google Scholar 

  32. Yu, D., Goh, K., Wang, H., et al. 2014. Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage. Nature Nanotechnology 9 (7): 555–562. https://doi.org/10.1038/nnano.2014.93.

    Article  CAS  Google Scholar 

  33. Fan, X., Chen, T., and Dai. L. 2014. Graphene networks for high-performance flexible and transparent supercapacitors. RSC Advances 4, 36996-37002. https://doi.org/10.1039/c4ra05076b.

    Article  Google Scholar 

  34. Qu, Q., Li, L., Tian, S., et al. 2010. A cheap asymmetric supercapacitor with high energy at high power: Activated carbon//K0.27MnO2·0.6H2O. Journal of Power Sources. 195 (9): 2789–2794. https://doi.org/10.1016/j.jpowsour.2009.10.108.

    Article  CAS  Google Scholar 

  35. Wu, Z.S., Ren, W.C., Wang, D.W., et al. 2010. High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 4 (10): 5835–5842. https://doi.org/10.1021/nn101754k.

    Article  CAS  Google Scholar 

  36. Jiang, H., Yang, L., Li, C., et al. 2011. High-rate electrochemical capacitors from highly graphitic carbon-tipped manganese oxide/mesoporous carbon/manganese oxide hybrid nanowires. Energy & Environmental Science 4, 1813–1819. https://doi.org/10.1039/c1ee01032h.

    Article  Google Scholar 

  37. Gao, H., Xiao, F., Ching, C.B., et al. 2012. High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2. ACS Applied Materials & Interfaces 4 (5): 2801–2810. https://doi.org/10.1021/am300455d.

    Article  CAS  Google Scholar 

  38. Gueon, D., and Moon, J.H. 2017. MnO2 nanoflake-shelled carbon nanotube particles for high-performance supercapacitors. ACS Sustainable Chemistry & Engineering 5 (3): 2445–2453. https://doi.org/10.1021/acssuschemeng.6b02803.

    Article  CAS  Google Scholar 

  39. Chen, Y., Zhang, J., Li, M., et al. 2018. Strong interface coupling and few-crystalline MnO2/reduced graphene oxide composites for supercapacitors with high cycle stability. Electrochimica Acta 292: 115–124. https://doi.org/10.1016/j.electacta.2018.09.131.

    Article  CAS  Google Scholar 

  40. Hong, S.B., Jeong, J.M., Kang, H.G., et al. 2018. Fast and scalable hydrodynamic synthesis of MnO2/defect-free graphene nanocomposites with high rate capability and long cycle life. ACS Applied Materials & Interfaces 10 (41): 35250–35259. https://doi.org/10.1021/acsami.8b12894.

    Article  CAS  Google Scholar 

  41. Jia, L., Shi, Y., Zhang, Q., et al. 2018. Green synthesis of ultrafine methyl-cellulose-derived porous carbon/MnO2 nanowires for asymmetric supercapacitors and flexible pattern stamping. Applied Surface Science. 462: 923–931. https://doi.org/10.1016/j.apsusc.2018.08.213.

    Article  CAS  Google Scholar 

  42. Sun, S., Jiang, G., Liu, Y., et al. 2018. Facile preparation of hybrid films based on MnO2 and reduced graphene oxide for a flexible supercapacitor. Journal of Electronic Materials. 47 (10): 5993–5999. https://doi.org/10.1007/s11664-018-6499-8.

    Article  CAS  Google Scholar 

  43. Kong, J., Xiong, G., Bo, Z., et al. 2019. Well-aligned hierarchical graphene-based electrodes for pseudocapacitors with outstanding low-temperature stability. ChemElectroChem. 6 (10): 2788–2795. https://doi.org/10.1002/celc.201900601.

    Article  CAS  Google Scholar 

  44. Zhang, M., Yang, D. and Li, J. 2020. Effective improvement of electrochemical performance of electrodeposited MnO2 and MnO2/reduced graphene oxide supercapacitor materials by alcohol pretreatment. Journal of Energy Storage 30: 101511. https://doi.org/10.1016/j.est.2020.101511.

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by Royal Society Newton Advanced Fellowship (Grant No. 52061130218), the National Natural Science Foundation of China (No. 51906211), and China Postdoctoral Science Foundation (Nos. 2020T130574 and 2019M662048). Z.B. thanks the National Program for Support of Top-notch Young Professionals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Bo.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author declares that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 587 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuang, W., Yang, H., Ying, C. et al. Cost-effective, environmentally-sustainable and scale-up synthesis of vertically oriented graphenes from waste oil and its supercapacitor applications. Waste Dispos. Sustain. Energy 3, 31–39 (2021). https://doi.org/10.1007/s42768-020-00068-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42768-020-00068-3

Keywords

Navigation