Skip to main content
Log in

Stable Solutions to the Abelian Yang–Mills–Higgs Equations on \(S^2\) and \(T^2\)

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We show under natural assumptions that stable solutions to the abelian Yang–Mills–Higgs equations on Hermitian line bundles over the round 2-sphere actually satisfy the vortex equations, which are a first-order reduction of the (second-order) abelian Yang–Mills–Higgs equations. We also obtain a similar result for stable solutions on a flat 2-torus. Our method of proof comes from the work of Bourguignon–Lawson (Commun Math Phys 79(2):189–230, 1981) concerning stable SU(2) Yang–Mills connections on compact homogeneous 4-manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aigner, Mats: Existence of the Ginzburg-Landau vortex number. Comm. Math. Phys. 216(1), 17–22 (2001)

    Article  MathSciNet  Google Scholar 

  2. Burns, D., Burstall, F., De Bartolomeis, P., Rawnsley, J.: Stability of harmonic maps of Kähler manifolds. J. Differential Geom. 30(2), 579–594 (1989)

    Article  MathSciNet  Google Scholar 

  3. Bethuel, Fabrice, Brezis, Haïm., Hélein, Frédéric.: Ginzburg-Landau vortices, Progress in Nonlinear Differential Equations and their Applications, vol. 13. Birkhäuser Boston Inc, Boston, MA (1994)

    MATH  Google Scholar 

  4. Bradlow, Steven B., García-Prada, Oscar: Non-abelian monopoles and vortices, Geometry and physics (Aarhus, 1995), Lecture Notes in Pure and Appl. Math., vol. 184, Dekker, New York, pp. 567–589 (1997)

  5. Bourguignon, Jean-Pierre., Lawson, H. Blaine., Jr.: Stability and isolation phenomena for Yang-Mills fields. Comm. Math. Phys. 79(2), 189–230 (1981)

    Article  MathSciNet  Google Scholar 

  6. Bogomol’nyi, E.B.: The stability of classical solutions. Soviet J. Nuclear Phys. 24(4), 449–454 (1976)

    MathSciNet  Google Scholar 

  7. Bradlow, Steven B.: Vortices in holomorphic line bundles over closed Kähler manifolds. Comm. Math. Phys. 135(1), 1–17 (1990)

    Article  MathSciNet  Google Scholar 

  8. Casten, Richard G., Holland, Charles J.: Instability results for reaction diffusion equations with Neumann boundary conditions. J. Differential Equations 27(2), 266–273 (1978)

    Article  MathSciNet  Google Scholar 

  9. Chen, Ko-Shin.: Instability of Ginzburg-Landau vortices on manifolds. Proc. Roy. Soc. Edinburgh Sect. A 143(2), 337–350 (2013)

    Article  MathSciNet  Google Scholar 

  10. Cheng, Da Rong: Instability of solutions to the Ginzburg-Landau equation on \(S^n\) and \(\mathbb{CP}^n\), arXiv:1911.04097 [math.DG] (2019), to appear in J. Funct. Anal.

  11. Donaldson, S.K., Kronheimer, P.B.: The geometry of four-manifolds, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, Oxford Science Publications (1990)

  12. García-Prada, Oscar: Invariant connections and vortices. Comm. Math. Phys. 156(3), 527–546 (1993)

    Article  MathSciNet  Google Scholar 

  13. García-Prada, Oscar: A direct existence proof for the vortex equations over a compact Riemann surface. Bull. London Math. Soc. 26(1), 88–96 (1994)

    Article  MathSciNet  Google Scholar 

  14. García-Prada, Oscar: Seiberg-Witten invariants and vortex equations, Symétries quantiques (Les Houches, 1995), North-Holland, Amsterdam, pp. 885–934 (1998)

  15. Gustafson, S., Sigal, I.M.: The stability of magnetic vortices. Comm. Math. Phys. 212(2), 257–275 (2000)

    Article  MathSciNet  Google Scholar 

  16. Jimbo, Shuichi, Morita, Yoshihisa: Stability of nonconstant steady-state solutions to a Ginzburg-Landau equation in higher space dimensions. Nonlinear Anal. 22(6), 753–770 (1994)

    Article  MathSciNet  Google Scholar 

  17. Jimbo, Shuichi, Sternberg, Peter: Nonexistence of permanent currents in convex planar samples. SIAM J. Math. Anal. 33(6), 1379–1392 (2002)

    Article  MathSciNet  Google Scholar 

  18. Jaffe, Arthur, Taubes, Clifford: Vortices and monopoles, Progress in Physics, vol. 2, Birkhäuser, Boston, Mass. (1980), Structure of static gauge theories

  19. Kuwabara, Ruishi: On spectra of the Laplacian on vector bundles. J. Math. Tokushima Univ. 16, 1–23 (1982)

    MathSciNet  MATH  Google Scholar 

  20. Blaine Lawson, H., Jr., Simons, James: On stable currents and their application to global problems in real and complex geometry. Ann. of Math. (2) 98, 427–450 (1973)

    Article  MathSciNet  Google Scholar 

  21. Matano, Hiroshi: Asymptotic behavior and stability of solutions of semilinear diffusion equations. Publ. Res. Inst. Math. Sci. 15(2), 401–454 (1979)

    Article  MathSciNet  Google Scholar 

  22. Micallef, Mario J.: Stable minimal surfaces in Euclidean space. J. Differential Geom. 19(1), 57–84 (1984)

    Article  MathSciNet  Google Scholar 

  23. Nagy, Ákos.: Irreducible Ginzburg-Landau fields in dimension 2. J. Geom. Anal. 28(2), 1853–1868 (2018)

    Article  MathSciNet  Google Scholar 

  24. Noguchi, Mitsunori: Yang-Mills-Higgs theory on a compact Riemann surface. J. Math. Phys. 28(10), 2343–2346 (1987)

    Article  MathSciNet  Google Scholar 

  25. Pacard, Frank, Rivière, Tristan: Linear and nonlinear aspects of vortices, Progress in Nonlinear Differential Equations and their Applications, vol. 39, Birkhäuser Boston, Inc., Boston, MA (2000), The Ginzburg-Landau model

  26. Pigati, A., Stern, D.: Minimal submanifolds from the abelian Higgs model, arXiv:1905.13726 [math.DG] (2019)

  27. Serfaty, Sylvia: Stability in 2D Ginzburg-Landau passes to the limit. Indiana Univ. Math. J. 54(1), 199–221 (2005)

    Article  MathSciNet  Google Scholar 

  28. Sandier, Etienne, Serfaty, Sylvia: Vortices in the magnetic Ginzburg-Landau model, Progress in Nonlinear Differential Equations and their Applications, vol. 70. Birkhäuser Boston Inc, Boston, MA (2007)

    MATH  Google Scholar 

  29. Stern, Mark: Geometry of minimal energy Yang-Mills connections. J. Differential Geom. 86(1), 163–188 (2010)

    Article  MathSciNet  Google Scholar 

  30. Siu, Yum Tong, Yau, Shing Tung: Compact Kähler manifolds of positive bisectional curvature. Invent. Math. 59(2), 189–204 (1980)

    Article  MathSciNet  Google Scholar 

  31. Taubes, Clifford Henry: Arbitrary \(N\)-vortex solutions to the first order Ginzburg-Landau equations. Comm. Math. Phys. 72(3), 277–292 (1980)

    Article  MathSciNet  Google Scholar 

  32. Taubes, Clifford Henry: On the equivalence of the first and second order equations for gauge theories. Comm. Math. Phys. 75(3), 207–227 (1980)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to thank André Neves and Guangbo Xu for helpful conversations related to this work. Thanks also go to the referee for many helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da Rong Cheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, D.R. Stable Solutions to the Abelian Yang–Mills–Higgs Equations on \(S^2\) and \(T^2\). J Geom Anal 31, 9551–9572 (2021). https://doi.org/10.1007/s12220-021-00619-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-021-00619-y

Keywords

Navigation