Skip to main content
Log in

Bi2O2Se/BP van der Waals heterojunction for high performance broadband photodetector

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Broadband photodetector has wide applications in the field of remote sensing, health monitoring and medical imaging. Two-dimensional (2D) materials with narrow bandgaps have shown enormous potential in broadband photodetection. However, the device performance is often restricted by the high dark currents. Herein, we demonstrate a high performance broadband photodetector by constructing Bi2O2Se/BP van der Waals heterojunction. The device exhibits a p-n diode behavior with a current rectification ratio of ∼20. Benifited from the low dark current of the heterojunction and the effective carrier separation, the device achieves the responsivity (R) of ∼ 500 A/W, ∼ 4.3 A/W and ∼ 2.3 A/W at 700 nm, 1310 nm and 1550 nm, respectively. The specific detectivity (D*) is up to ∼ 2.8 × 1011 Jones (700 nm), ∼ 2.4 × 109 Jones (1310 nm) and ∼ 1.3 × 109 Jones (1550 nm). Moreover, the response time is ∼ 9 ms, which is more than 20 times faster than that of individual BP (∼ 190 ms) and Bi2O2Se (∼ 180 ms) devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Koppens F H L, Mueller T, Avouris P, et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat Nanotech, 2014, 9: 780–793

    Article  Google Scholar 

  2. Buscema M, Island J O, Groenendijk D J, et al. Photocurrent generation with two-dimensional van der Waals semiconductors. Chem Soc Rev, 2015, 44: 3691–3718

    Article  Google Scholar 

  3. Suess R J, Leong E, Garrett J L, et al. Mid-infrared time-resolved photoconduction in black phosphorus. 2D Mater, 2016, 3: 041006

    Article  Google Scholar 

  4. Buscema M, Groenendijk D J, Blanter S I, et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett, 2014, 14: 3347–3352

    Article  Google Scholar 

  5. Liu B, Kopf M, Abbas A N, et al. Black arsenic-phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties. Adv Mater, 2015, 27: 4423–4429

    Article  Google Scholar 

  6. Yuan S, Shen C, Deng B, et al. Air-stable room-temperature mid-infrared photodetectors based on hBN/black arsenic phosphorus/hBN heterostructures. Nano Lett, 2018, 18: 3172–3179

    Article  Google Scholar 

  7. Fu Q, Zhu C, Zhao X, et al. Ultrasensitive 2D Bi2O2Se phototransistors on silicon substrates. Adv Mater, 2019, 31: 1804945

    Article  Google Scholar 

  8. Li J, Wang Z, Wen Y, et al. High-performance near-infrared photodetector based on ultrathin Bi2O2Se nanosheets. Adv Funct Mater, 2018, 28: 1706437

    Article  Google Scholar 

  9. Wang J, Fang H, Wang X, et al. Recent progress on localized field enhanced two-dimensional material photodetectors from ultraviolet-visible to infrared. Small, 2017, 13: 1700894

    Article  Google Scholar 

  10. Wu F, Li Q, Wang P, et al. High efficiency and fast van der Waals hetero-photodiodes with a unilateral depletion region. Nat Commun, 2019, 10: 4663

    Article  Google Scholar 

  11. Jin C, Ma E Y, Karni O, et al. Ultrafast dynamics in van der Waals heterostructures. Nat Nanotech, 2018, 13: 994–1003

    Article  Google Scholar 

  12. Lee C H, Lee G H, van der Zande A M, et al. Atomically thin p-n junctions with van der Waals heterointerfaces. Nat Nanotech, 2014, 9: 676–681

    Article  Google Scholar 

  13. Fang H, Battaglia C, Carraro C, et al. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proc Natl Acad Sci USA, 2014, 111: 6198–6202

    Article  Google Scholar 

  14. Massicotte M, Schmidt P, Vialla F, et al. Picosecond photoresponse in van der Waals heterostructures. Nat Nanotech, 2016, 11: 42–46

    Article  Google Scholar 

  15. Wang C, He Q, Halim U, et al. Monolayer atomic crystal molecular superlattices. Nature, 2018, 555: 231–236

    Article  Google Scholar 

  16. Yang F, Wang R, Zhao W, et al. Thermal transport and energy dissipation in two-dimensional Bi2O2Se. Appl Phys Lett, 2019, 115: 193103

    Article  Google Scholar 

  17. Doganov R A, O’Farrell E C T, Koenig S P, et al. Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere. Nat Commun, 2015, 6: 6647

    Article  Google Scholar 

  18. Frisenda R, Molina-Mendoza A J, Mueller T, et al. Atomically thin p-n junctions based on two-dimensional materials. Chem Soc Rev, 2018, 47: 3339–3358

    Article  Google Scholar 

  19. Liu H, Zhu X, Sun X, et al. Self-powered broad-band photodetectors based on vertically stacked WSe2/Bi2Te3 p-n heterojunctions. ACS Nano, 2019, 13: 13573–13580

    Article  Google Scholar 

  20. Luo P, Zhuge F, Wang F, et al. PbSe quantum dots sensitized high-mobility Bi2O2Se nanosheets for high-performance and broadband photodetection beyond 2 µm. ACS Nano, 2019, 13: 9028–9037

    Article  Google Scholar 

  21. Shim J, Oh S, Kang D H, et al. Phosphorene/rhenium disulfide heterojunction-based negative differential resistance device for multi-valued logic. Nat Commun, 2016, 7: 13413

    Article  Google Scholar 

  22. Cai Y, Zhang G, Zhang Y W. Layer-dependent band alignment and work function of few-layer phosphorene. Sci Rep, 2015, 4: 6677

    Article  Google Scholar 

  23. Wu J, Yuan H, Meng M, et al. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nat Nanotech, 2017, 12: 530–534

    Article  Google Scholar 

  24. Srivastava P K, Hassan Y, Gebredingle Y, et al. Van der Waals broken-gap p-n heterojunction tunnel diode based on black phosphorus and rhenium disulfide. ACS Appl Mater Interfaces, 2019, 11: 8266–8275

    Article  Google Scholar 

  25. Liu H, Li D, Ma C, et al. Van der Waals epitaxial growth of vertically stacked Sb2Te3/MoS2 p-n heterojunctions for high performance optoelectronics. Nano Energy, 2019, 59: 66–74

    Article  Google Scholar 

  26. Yu Y, Sun Y, Hu Z, et al. Fast photoelectric conversion in the near-infrared enabled by plasmon-induced hot-electron transfer. Adv Mater, 2019, 31: 1903829

    Article  Google Scholar 

  27. Zhao S, Wu J, Jin K, et al. Highly polarized and fast photoresponse of black phosphorus-InSe vertical p-n heterojunctions. Adv Funct Mater, 2018, 28: 1802011

    Article  Google Scholar 

  28. Xie Y, Wu E, Zhang J, et al. Gate-tunable photodetection/voltaic device based on BP/MoTe2 heterostructure. ACS Appl Mater Interfaces, 2019, 11: 14215–14221

    Article  Google Scholar 

  29. Zhu W, Wei X, Yan F, et al. Broadband polarized photodetector based on p-BP/n-ReS2 heterojunction. J Semicon, 2019, 40: 092001

    Article  Google Scholar 

  30. Zheng S, Wu E, Feng Z, et al. Acoustically enhanced photodetection by a black phosphorus-MoS2 van der Waals heterojunction p-n diode. Nanoscale, 2018, 10: 10148–10153

    Article  Google Scholar 

  31. Jiang X, Zhang M, Liu L, et al. Multifunctional black phosphorus/MoS2 van der Waals heterojunction. Nanophotonics, 2020, 9: 2487–2493

    Article  Google Scholar 

  32. Hong T, Chamlagain B, Wang T, et al. Anisotropic photocurrent response at black phosphorus-MoS2 p-n heterojunctions. Nanoscale, 2015, 7: 18537–18541

    Article  Google Scholar 

  33. Ye L, Li H, Chen Z, et al. Near-infrared photodetector based on MoS2/black phosphorus heterojunction. ACS Photonics, 2016, 3: 692–699

    Article  Google Scholar 

  34. Xu Y, Liu C, Guo C, et al. High performance near infrared photodetector based on in-plane black phosphorus p-n homojunction. Nano Energy, 2020, 70: 104518

    Article  Google Scholar 

  35. Yu X, Zhang S, Zeng H, et al. Lateral black phosphorene P-N junctions formed via chemical doping for high performance near-infrared photodetector. Nano Energy, 2016, 25: 34–41

    Article  Google Scholar 

  36. Yang T, Li X, Wang L, et al. Broadband photodetection of 2D Bi2O2Se-MoSe2 heterostructure. J Mater Sci, 2019, 54: 14742–14751

    Article  Google Scholar 

  37. Tan C, Xu S, Tan Z, et al. Exploitation of Bi2O2Se/graphene van der Waals heterojunction for creating efficient photodetectors and short-channel field-effect transistors. InfoMat, 2019, 1: 390–395

    Article  Google Scholar 

  38. Yuan H, Liu X, Afshinmanesh F, et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction. Nat Nanotech, 2015, 10: 707–713

    Article  Google Scholar 

  39. Guo Z, Zhang H, Lu S, et al. From black phosphorus to phosphorene: basic solvent exfoliation, evolution of raman scattering, and applications to ultrafast photonics. Adv Funct Mater, 2015, 25: 6996–7002

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Program of China (Grant Nos. 2017YFA0205700, 2019YFA0308000), National Natural Science Foundation of China (Grant Nos. 61774034, 91963130, 11704068, 61705106), Jiangsu Natural Science Foundation (Grant No. BK20170694), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junpeng Lu or Zhenhua Ni.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Wang, W., Yang, F. et al. Bi2O2Se/BP van der Waals heterojunction for high performance broadband photodetector. Sci. China Inf. Sci. 64, 140404 (2021). https://doi.org/10.1007/s11432-020-3101-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-020-3101-1

Keywords

Navigation