Skip to main content
Log in

Existence and multiplicity of semiclassical states for Gross–Pitaevskii equation in dipolar quantum gases

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Aims and scope Submit manuscript

Abstract

In this paper, we study the singularly perturbed Gross–Pitaevskii equation

$$\begin{aligned} -\epsilon ^2\Delta u+V(x)u+\lambda _1|u|^2u+\lambda _2(K*|u|^2)u=0,\ u\in H^1({\mathbb {R}}^3), \end{aligned}$$

where \(\epsilon >0\) is a parameter, the potential V is a positive function which possesses global minimum points, \(\lambda _1,\lambda _2\in {\mathbb {R}}\), \(*\) denotes the convolution, \(K(x)=\frac{1-3\cos ^2{\theta }}{|x|^3}\) and \(\theta =\theta (x)\) is the angle between the dipole axis determined by (0, 0, 1) and the vector x. Using variational methods, we show the existence of ground states for \(\epsilon \) small, and describe the concentration phenomena of ground states as \(\epsilon \rightarrow 0\). We also investigate the relationship between the number of positive solutions and the profile of the potential V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antonelli, P., Sparber, C.: Existence of solitary waves in dipolar quantum gases. Phys. D 240, 426–431 (2011)

    Article  MathSciNet  Google Scholar 

  2. Bao, W., Cai, Y., Wang, H.: Efficient numerical method for computing ground states and dynamic of dipolar Bose–Einstein condensates. J. Comput. Phys. 229, 7874–7892 (2010)

    Article  MathSciNet  Google Scholar 

  3. Bellazzini, J., Jeanjean, L.: On dipolar quantum gases in the unstable regime. SIAM J. Math. Anal. 48, 2028–2058 (2017)

    Article  MathSciNet  Google Scholar 

  4. Byeon, J., Jeanjean, L.: Standing waves for nonlinear Schrödinger equations with a general nonlinearity. Arch. Ration. Mech. Anal. 185, 185–200 (2007)

    Article  MathSciNet  Google Scholar 

  5. Byeon, J., Wang, Z.Q.: Standing waves with a critical frequency for nonlinear Schrödinger equations II. Calc. Var. Partial Differ. Equ. 18, 207–219 (2003)

    Article  Google Scholar 

  6. Cao, D., Noussair, E.: Multiplicity of positive and nodal solutions for nonlinear elliptic problems in \({\mathbb{R}}^N\). Ann. Inst. H. Poincaré Anal. Non Linéaire 13, 567–588 (1996)

    Article  MathSciNet  Google Scholar 

  7. Carles, R., Hajaiej, H.: Complementary study of the standing waves solutions of the Gross–Pitaevskii equation in dipolar quantum gases. Bull. Lond. Math. Soc. 47, 509–518 (2015)

    Article  MathSciNet  Google Scholar 

  8. Carles, R., Markowich, P., Sparber, C.: On the Gross–Pitaevskii equation for trapped dipolar quantum gases. Nonlinearity 21, 2569–2590 (2008)

    Article  MathSciNet  Google Scholar 

  9. Figueiredo, G.M., Ikoma, N., Santos, J.R.: Existence and concentration result for the Kirchhoff type equations with general nonlinearities. Arch. Ration. Mech. Anal. 213, 931–979 (2014)

    Article  MathSciNet  Google Scholar 

  10. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1983)

    Book  Google Scholar 

  11. He, Y., Luo, X.: Concentrating standing waves for the Gross–Pitaevskii equation in trapped dipolar quantum gases. J. Differ. Equ. 266, 600–629 (2019)

    Article  MathSciNet  Google Scholar 

  12. Santos, L., Shlyapnikov, G., Zoller, P., Lewenstein, M.: Bose–Einstein condensation in trapped dipolar gases. Phys. Rev. Lett. 85, 1791–1797 (2000)

    Article  Google Scholar 

  13. Wang, X.: On concentration of positive bound states of nonlinear Schrödinger equations. Commun. Math. Phys. 153, 229–244 (1993)

    Article  Google Scholar 

  14. Willem, M.: Minimax Theorems, Progr. Nonlinear Differential Equations Appl., vol. 24. Birkhäuser, Basel (1996)

  15. Yi, S., You, L.: Trapped atomic condensates with anisotropic interactions. Phys. Rev. 61, 041604 (2000)

    Article  Google Scholar 

  16. Yi, S., You, L.: Trapped condensates of atoms with dipole interactions. Phys. Rev. 63, 053607 (2001)

    Article  Google Scholar 

  17. Zhang, H., Xu, J.X., Zhang, F.B.: Multiplicity of semiclassical states for Schrödinger–Poisson systems with critical frequency. Z. Angew. Math. Phys. 71 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work was supported by the National Natural Science Foundation of China (Nos. 11871146, 11671077), Qinglan Project of Jiangsu Province of China, and Jiangsu Overseas Visiting Scholar Program for University Prominent Young and Middle-aged Teachers and Presidents.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Xu, J. Existence and multiplicity of semiclassical states for Gross–Pitaevskii equation in dipolar quantum gases. RACSAM 115, 71 (2021). https://doi.org/10.1007/s13398-021-01012-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-021-01012-8

Keywords

Mathematics Subject Classification

Navigation