Skip to main content
Log in

Parabolic Harnack Inequality Implies the Existence of Jump Kernel

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

We prove that the parabolic Harnack inequality implies the existence of jump kernel for symmetric pure jump process. This allows us to remove a technical assumption on the jumping measure in the recent characterization of the parabolic Harnack inequality for pure jump processes by Chen, Kumagai and Wang. The key ingredients of our proof are the Lévy system formula and estimates on the heat kernel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barlow, M.T., Bass, R.F.: Stability of parabolic Harnack inequalities. Trans. Amer. Math. Soc. 356(4), 1501–1533 (2004)

    Article  MathSciNet  Google Scholar 

  2. Barlow, M.T., Bass, R.F., Kumagai, T.: Stability of parabolic Harnack inequalities on metric measure spaces. J. Math. Soc. Japan 58(2), 485–519 (2006)

    Article  MathSciNet  Google Scholar 

  3. Barlow, M.T., Bass, R.F., Chen, Z.-Q., Kassmann, M.: Non-local Dirichlet forms and symmetric jump processes. Trans. Amer. Math. Soc. 361(4), 1963–1999 (2009)

    Article  MathSciNet  Google Scholar 

  4. Bass, M.T., Barlow R.F., Kumagai, T.: Parabolic Harnack inequality and heat kernel estimates for random walks with long range jumps. Math. Z. 261 (2), 297–320 (2009)

    Article  MathSciNet  Google Scholar 

  5. Barlow, M.T., Grigor’yan, A., Kumagai, T.: On the equivalence of parabolic Harnack inequalities and heat kernel estimates. J. Math. Soc. Japan 64 (4), 1091–1146 (2012)

    Article  MathSciNet  Google Scholar 

  6. Bass, R.F., Chen, Z.-Q.: Regularity of harmonic functions for a class of singular stable-like processes. Math. Z. 266, 489–503 (2010)

    Article  MathSciNet  Google Scholar 

  7. Chen, Z.-Q.: Private communication (2020)

  8. Chen, Z.-Q., Fukushima, M.: Symmetric Markov Processes, Time Change, and Boundary Theory. Princeton University Press, Princeton (2012)

    MATH  Google Scholar 

  9. Chen, Z.-Q., Kumagai, T., Wang, J.: Stability of parabolic Harnack inequalities for symmetric non-local Dirichlet forms. J. Eur. Math. Soc. (JEMS) (to appear) arXiv:1703.09385

  10. Chen, Z.-Q., Kumagai, T., Wang, J.: Mean value inequalities for jump processes. stochastic partial differential equations and related fields, In Honor of Michael röckner, SPDERF, Bielefeld, pp. 421–437, Springer Proc. in Math and Stat., 229 (2018)

  11. Chen, Z.-Q., Kumagai, T., Wang, J.: Heat kernel estimates and parabolic Harnack inequalities for symmetric Dirichlet forms, Adv. Math. (to appear) arXiv:1908.07650v1

  12. Delmotte, T.: Parabolic Harnack inequality and estimates of Markov chains on graphs. Rev. Math. Iberoamericana 15, 181–232 (1999)

    Article  MathSciNet  Google Scholar 

  13. Felsinger, M., Kassmann, M.: Local regularity for parabolic nonlocal operators. Comm. Part. Diff. Eq. 38(9), 1539–1573 (2013)

    Article  MathSciNet  Google Scholar 

  14. Fukushima, M., Oshima, Y., Takeda, M.1: Dirichlet forms and symmetric Markov processes. Berlin, 2nd ed. (2011)

  15. Grigor’yan, A.: The heat equation on noncompact Riemannian manifolds. (in Russian). Matem. Sbornik. 182, 55–87 (1991). (English transl.) Math. USSR Sbornik 72 (1992), 47–77

    MATH  Google Scholar 

  16. Grigor’yan, A., Hu, J., Lau, K.-S.: Generalized capacity, Harnack inequality and heat kernels of Dirichlet forms on metric spaces. J. Math. Soc. Japan 67, 1485–1549 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Hebisch, W., Saloff-Coste, L.: On the relation between elliptic and parabolic Harnack inequalities. Ann. Inst. Fourier (Grenoble) 51(5), 1437–1481 (2001)

    Article  MathSciNet  Google Scholar 

  18. Heinonen, J.: Lectures on Analysis on Metric Spaces, Universitext. Springer-Verlag, New York (2001). x + 140 pp

    Book  Google Scholar 

  19. Kassmann, M.: Harnack inequalities: an introduction. Bound. Value Probl., Art. ID 81415, 21 pp (2007)

  20. Kassmann, M., Kim, K.-Y., Kumagai, T.: Heat kernel bounds for nonlocal operators with singular kernels, (preprint) arXiv:1910.04242 (2019)

  21. Saloff-Coste, L.: A note on Poincaré, Sobolev, and Harnack inequalities. Inter. Math. Res. Notices 2, 27–38 (1992)

    Article  Google Scholar 

  22. Sturm, K.-T.: Analysis on local Dirichlet spaces III. The parabolic Harnack inequality. J. Math. Pures. Appl. 75(9), 273–297 (1996)

    MathSciNet  MATH  Google Scholar 

  23. Xu, F.: A class of singular symmetric Markov processes. Potential Anal. 38(1), 207–232 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We are grateful to Zhen-Qing Chen for providing us an alternate proof of Lemma 2.4 that avoids the use of near diagonal lower bound. We thank Jian Wang for helpful comments on a previous draft and in particular for the example in Remark 2.5. We thank the anonymous referee for a careful reading of the paper, for helpful suggestions in general and especially concerning Remark 2.6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathav Murugan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research partially supported by China Scholarship Council.

Research partially supported by NSERC and the Canada research chairs program.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Murugan, M. Parabolic Harnack Inequality Implies the Existence of Jump Kernel. Potential Anal 57, 155–166 (2022). https://doi.org/10.1007/s11118-021-09909-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-021-09909-0

Mathematics Subject Classification (2010)

Navigation