Skip to main content
Log in

Effect of Ionic Structure on Dissolution Behavior of Nickel in Aluminosilicate Slags

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The effects of basicity and anionic species on the solubility of Ni in CaO-MgO-Al2O3-SiO2 slags were investigated based on the thermodynamic evaluation and structural analysis of the coordination number of Al ions via 27Al 500-MHz solid-state nuclear magnetic resonance spectroscopy. Depending on slag basicity, Ni dissolution followed two mechanisms, involving Ni2+ and NiO22− as ionic species. The solubility–basicity plot was found to be a concave upward curve with a minimum value. Structural investigation indicated that Ni solubility decreased with increasing Al2O3 content owing to the concomitant increase in the repulsion between AlO45− and NiO22− ions. The effects of Al2O3- and SiO2-derived anionic species on Ni solubility were also discussed based on the results of the structural analysis of slag and thermodynamic evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A.D. Dalvi, W.G. Bacon, and R.C. Osborne: Proceedings of PDAC 2004 International Convention, The Prospectors and Developers Association of Canada, Toronto, Ontario, Canada, 2004, pp. 1–27.

  2. C.R. Butt and D. Cluzel: Elements, 2013, vol. 9, pp. 123–128. https://doi.org/10.2113/gselements.9.2.123.

    Article  CAS  Google Scholar 

  3. F.M. Rodrigues: Investigation into the thermal upgrading of nickeliferous laterite ores. Master’s Thesis, Queens University, Kingston, Ontario, Canada, 2013.

  4. S. Pournaderi: Optimization of ferronickel production from Sivrihisar nickel laterite ore, Ph.D. Thesis, Middle East Technical University, Ankara, Turkey, 2014.

  5. R. Bergman: CIM Bull., 2003, vol. 96, pp. 127–138.

    CAS  Google Scholar 

  6. E. Jak, P. Hayes: Proc. 12th Int. Ferroalloys Congr.: Sustain. Future, 2010, pp. 6–9.

  7. C. Pan, X. Lv, C. Bai, X. Liu, and D. Li: J. Min. Metall. Sect. B: Metall., 2013, vol. 49, pp. 9–12. https://doi.org/10.2298/JMMB120112034P.

    Article  CAS  Google Scholar 

  8. K.D. Kim, W.W. Huh, and D.J. Min: Metall. Mater. Trans. B, 2014, vol. 45, pp. 889–896. https://doi.org/10.1007/s11663-013-9994-6.

    Article  CAS  Google Scholar 

  9. S.H. Lee, S.M. Moon, D.J. Min, and J.H. Park: Metall. Mater. Trans. B, 2002, vol. 33, pp. 55–59. https://doi.org/10.1007/s11663-002-0085-3.

    Article  CAS  Google Scholar 

  10. J.G. Park, H.S. Eom, W.W. Huh, Y.S. Lee, D.J. Min, and I. Sohn: Steel Res. Int., 2011, vol. 82, pp. 415–421. https://doi.org/10.1002/srin.201000151.

    Article  CAS  Google Scholar 

  11. R.U. Pagador, M. Hino, and K. Itagaki: Proc. Molten Slags, Fluxes and Salts, 1997, pp. 321–27.

  12. M. Nagamori: Metall. Trans., 1974, vol. 5, pp. 539–548. https://doi.org/10.1007/BF02644647.

    Article  CAS  Google Scholar 

  13. M. Nagamori and P. Mackey: Can. Metall. Quart., 1977, vol. 16, pp. 232–236. https://doi.org/10.1179/cmq.1977.16.1.232.

    Article  CAS  Google Scholar 

  14. R. Reddy and C. Acholonu: Metall. Trans. B, 1984, vol. 15, 33–37. https://doi.org/10.1007/BF02661060.

    Article  Google Scholar 

  15. J. R. Taylor and J.H.E. Jeffes: Trans. Inst. Min. Metall., 1974, vol. 84, pp. C136–C148.

    Google Scholar 

  16. E. Grimsey and A.K. Biswas: Trans. Inst. Min. Metall., 1977, vol. 86, pp. C1–C8.

    Google Scholar 

  17. S. Wang, A. Kurtis, and J. Toguri: Can. Metall. Quart., 1973, vol. 12, pp. 383–390. https://doi.org/10.1179/cmq.1973.12.4.383.

    Article  CAS  Google Scholar 

  18. C. Wagner: Metall. Trans. B., 1975, vol. 6, 405. Doi:10.1007/BF02913825.

    Article  Google Scholar 

  19. E.B. Pretorius and A. Muan: J. Am. Ceram. Soc., 1992, vol. 75, pp. 1490–1496. https://doi.org/10.1111/j.1151-2916.1992.tb04215.x.

    Article  CAS  Google Scholar 

  20. I. Campbell, A. Naldrett, and P. Roeder: Can. Mineral., 1979, vol. 17, pp. 495–505.

    CAS  Google Scholar 

  21. K. Matsuzaki, K. Ito, and T. Yamaguchi: Metall. Mater. Trans. B., 1999, vol. 30, pp. 143–144. https://doi.org/10.1007/s11663-999-0014-9.

    Article  CAS  Google Scholar 

  22. A. Paul: J. Mater. Sci., 1975, vol. 10, pp. 422–426. https://doi.org/10.1007/BF00543686.

    Article  CAS  Google Scholar 

  23. A. Holzheid, H. Palme, and S. Chakraborty: Chem. Geol., 1997, vol. 139, pp. 21–38. https://doi.org/10.1016/S0009-2541(97)00030-2.

    Article  CAS  Google Scholar 

  24. A. Navrotsky, G. Peraudeau, P. McMillan, and J.-P. Coutures: Geochim. Cosmochim. Acta, 1982, vol. 46, pp. 2039–2047. https://doi.org/10.1016/0016-7037(82)90183-1.

    Article  CAS  Google Scholar 

  25. B.O. Mysen, D. Virgo, and I. Kushiro: Am. Mineral., 1981, vol. 66, pp. 678–701.

    CAS  Google Scholar 

  26. L. Pauling: J. Am. Chem. Soc., 1929, vol. 51, pp. 1010–1026. https://doi.org/10.1021/ja01379a006.

    Article  CAS  Google Scholar 

  27. W. Loewenstein: Am. Mineral., 1954, vol. 39, pp. 92–96.

    CAS  Google Scholar 

  28. M.J. Toplis and D.B. Dingwell: Geochim. Cosmochim. Acta, 2004, vol. 68, pp. 5169–5188. https://doi.org/10.1016/j.gca.2004.05.041.

    Article  CAS  Google Scholar 

  29. D.R. Neuville, L. Cormier, and D. Massiot: Geochim. Cosmochim. Acta, 2004, vol. 68, pp. 5071–5079. https://doi.org/10.1016/j.gca.2004.05.048.

    Article  CAS  Google Scholar 

  30. D.R. Neuville, L. Cormier, and D. Massiot: Chem. Geol., 2006, vol. 229, pp. 173–185. https://doi.org/10.1016/j.chemgeo.2006.01.019.

    Article  CAS  Google Scholar 

  31. S.K. Lee and J.F. Stebbins, Am. Mineral., 1999, vol. 84, pp. 937–945. https://doi.org/10.2138/am-1999-5-630.

    Article  CAS  Google Scholar 

  32. S.K. Lee, H.-I. Kim, E.J. Kim, K.Y. Mun, and S. Ryu: J. Phys. Chem. C, 2015, vol. 120, pp. 737–749. https://doi.org/10.1021/acs.jpcc.5b10799.

    Article  CAS  Google Scholar 

  33. S. Lee and D.J. Min: J. Am. Ceram. Soc., 2018, vol. 101, pp. 634–643. https://doi.org/10.1111/jace.15227.

    Article  CAS  Google Scholar 

  34. J.S. Choi, Y. Park, S. Lee, and D.J. Min: J. Am. Ceram. Soc., 2018, vol. 101, pp. 2856–2867. https://doi.org/10.1111/jace.15435.

    Article  CAS  Google Scholar 

  35. G. Zhang, N. Wang, M. Chen, and Y. Wang: Steel Res. Int., 2018, vol. 89, 1800273. Doi:10.1002/srin.201800273.

    Article  CAS  Google Scholar 

  36. J. Liao, Y. Zhang, S. Sridhar, X. Wang, and Z. Zhang: ISIJ Int., 2012, vol. 52, pp. 753–758. https://doi.org/10.2355/isijinternational.52.753.

    Article  CAS  Google Scholar 

  37. K. Morita, K. Tsukihashi, M. Kimura, and N. Sano: Steel Res. Int., 2005, vol. 76, pp. 279–283. https://doi.org/10.1002/srin.200506009

    Article  CAS  Google Scholar 

  38. M. Singleton and P. Nash: Phase Diagrams of Binary Nickel Alloys., ASM Intl., Materials Park, OH, 1991, pp. 207–12.

  39. E.T. Turkdogan: Physical Chemistry of High Temperature Technology, Academic Press, Cambridge, MA, 1980.

    Google Scholar 

  40. C.M. Yoon, Y. Park, and D.J. Min: Ceram. Int., 2020, vol. 46, pp. 17062–17075. https://doi.org/10.1016/j.ceramint.2020.04.002

    Article  CAS  Google Scholar 

  41. C.M. Yoon, Y. Park, and D.J. Min: Metall. Mater. Trans. B., 2018, vol. 49, pp. 2322–2331. https://doi.org/10.1007/s11663-018-1317-5

    Article  CAS  Google Scholar 

  42. A. Kulkarni and R. Johnson: Metall. Trans., 1973, vol. 4, pp. 1723–1727. https://doi.org/10.1007/BF02666202.

    Article  CAS  Google Scholar 

  43. G. Sigworth and J. Elliott: Can. Metall. Quart., 1974, vol. 13, pp. 455–461. https://doi.org/10.1179/cmq.1974.13.3.455.

    Article  CAS  Google Scholar 

  44. J.S. Choi, T.J. Park, and D.J. Min: J. Am. Ceram. Soc., 2021, vol. 104, pp. 140–156. https://doi.org/10.1111/jace.17432

    Article  CAS  Google Scholar 

  45. J.S. Choi and D.J. Min: Metall. Mater. Trans. B., 2019, vol. 50, pp. 2758–2768. https://doi.org/10.1007/s11663-019-01699-6.

    Article  CAS  Google Scholar 

  46. L.S. Darken: Trans. Metall. Soc. AIME, 1967, vol. 239, pp. 80–89.

    CAS  Google Scholar 

  47. C.H.P. Lupis, Chemical Thermodynamics of Materials, Prentice Hall, New York, NY, 1983, pp. 71–96

    Google Scholar 

Download references

Acknowledgments

We would like to thank Editage (www.editage.co.kr) for English language editing. We would like to thank Dr. Yoon-Joo Ko of the National Center for Interuniversity Research Facilities (NCIRF) at Seoul National University for her contribution to all of the NMR experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Joon Min.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 21, 2020; accepted January 14, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, J.S., Park, T.J. & Min, D.J. Effect of Ionic Structure on Dissolution Behavior of Nickel in Aluminosilicate Slags. Metall Mater Trans B 52, 1333–1343 (2021). https://doi.org/10.1007/s11663-021-02096-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02096-8

Navigation