Skip to main content
Log in

Stability and Logarithmic Decay of the Solution to Hadamard-Type Fractional Differential Equation

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

In this paper, we study the stability and logarithmic decay of the solutions to fractional differential equations (FDEs). Both linear and nonlinear cases are included. And the fractional derivative is in the sense of Hadamard or Caputo–Hadamard with order \(\alpha \,(0<\alpha <1)\). The solutions can be expressed by Mittag–Leffler functions through applying the modified Laplace transform. In view of the asymptotic expansions of Mittag–Leffler function, we discuss the stability and logarithmic decay of the solution to FDEs in great detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad, B., Alsaedi, A., Ntouyas, S.K., Tariboon, J.: Hadamard-Type Fractional Differential Equations. Inclusions and Inequalities. Springer, Cham (2017)

    Book  Google Scholar 

  • Deng, W.H., Li, C.P., Guo, Q.: Analysis of fractional differential equations with multi-orders. Fractals 15(2), 173–182 (2007a)

    Article  MathSciNet  Google Scholar 

  • Deng, W.H., Li, C.P., Lü, J.H.: Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dyn. 48, 409–416 (2007b)

    Article  MathSciNet  Google Scholar 

  • Gohar, M., Li, C.P., Li, Z.: Finite difference methods for Caputo–Hadamard fractional differential equations. Mediterranean J. Math. 17(6), 194 (2020a)

    Article  MathSciNet  Google Scholar 

  • Gohar, M., Li, C.P., Yin, C.T.: On Caputo–Hadamard fractional differential equations. Int. J. Comput. Math. 97(7), 1459–1483 (2020b)

    Article  MathSciNet  Google Scholar 

  • Gong, Z.Q., Qian, D.L., Li, C.P., Guo, P.: On the Hadamard type fractional differential system. In: Baleanu, D., Tenreiro Machado, J.A. (eds.) Fractional Dynamics and Control, pp. 159–171. Springer, New York (2012)

    Chapter  Google Scholar 

  • Gorenflo, R., Luchko, Y., Mainardi, F.: Wright functions as scale-invariant solutions of the diffusion-wave equation. J. Comput. Appl. Math. 118(1–2), 175–191 (2000)

    Article  MathSciNet  Google Scholar 

  • Hadamard, J.: Essai sur létude des fonctions données par leur développement de Taylor. J. Math. Pures Appl. 8, 101–186 (1892)

    MATH  Google Scholar 

  • Hartman, P.: A lemma in the theory of structural stability of differential equations. Proc. Am. Math. Soc. 11(4), 610–620 (1960)

    Article  MathSciNet  Google Scholar 

  • Hartman, P.: On the local linearization of differential equations. Proc. Am. Math. Soc. 14(4), 568–573 (1963)

    Article  MathSciNet  Google Scholar 

  • Hartman, P.: Ordinary Differential Equations, 2nd edn. Birkhauser, Basel (1982)

    MATH  Google Scholar 

  • Jarad, F., Abdeljawad, T.: Generalized fractional derivatives and Laplace transform. Discrete Contin. Dyn. Syst. S 13(3), 709–722 (2020)

    Article  MathSciNet  Google Scholar 

  • Jarad, F., Abdeljawad, T., Baleanu, D.: Caputo-type modification of the Hadamard fractional derivatives. Adv. Differ. Equ. 2012, 142 (2012)

    Article  MathSciNet  Google Scholar 

  • Kilbas, A.A.: Hadamard-type fractional calculus. J. Korean Math. Soc. 38(38), 1191–1204 (2001)

    MathSciNet  MATH  Google Scholar 

  • Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier Science, Amsterdam (2006)

    MATH  Google Scholar 

  • Li, C.P., Cai, M.: Theory and Numerical Approximations of Fractional Integrals and Derivatives. SIAM, Philadelphia (2019)

    Book  Google Scholar 

  • Li, C.P., Li, Z.Q.: Asymptotic behaviors of solution to Caputo–Hadamard fractional partial differential equation with fractional Laplacian: Hyperbolic case. Discrete Contin. Dyn. Syst. S (2020). https://doi.org/10.3934/dcdss.2021023

    Article  Google Scholar 

  • Li, C.P., Li, Z.Q.: Asymptotic behaviors of solution to Caputo–Hadamard fractional partial differential equation with fractional Laplacian. Int. J. Comput. Math. 98, 305–339 (2021). https://doi.org/10.1080/00207160.2020.1744574

    Article  MathSciNet  Google Scholar 

  • Li, C.P., Ma, Y.T.: Fractional dynamical system and its linearization theorem. Nonlinear Dyn. 71, 621–633 (2013)

    Article  MathSciNet  Google Scholar 

  • Li, C.P., Sarwar, S.: Linearization of nonlinear fractional differential systems with Riemann–Liouville and Hadamard derivatives. Progr. Fract. Differ. Appl. 6(1), 11–22 (2020)

    Article  Google Scholar 

  • Li, C.P., Yi, Q.: Modeling and computing of fractional convection equation. Commun. Appl. Math. Comput. 1(4), 565–595 (2019)

    Article  MathSciNet  Google Scholar 

  • Li, C.P., Zhang, F.R.: A survey on the stability of fractional differential equations. Eur. Phys. J. Spec. Top. 193, 27–47 (2011)

    Article  Google Scholar 

  • Li, C.P., Zhao, Z.G.: Asymptotical stability analysis of linear fractional differential systems. J. Shanghai Univ. (Engl. Ed.) 13(3), 197–206 (2009)

    Article  MathSciNet  Google Scholar 

  • Li, Y., Chen, Y.Q., Podlubny, I.: Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag–Leffler stability. Comput. Math. Appl. 59(5), 1810–1821 (2010)

    Article  MathSciNet  Google Scholar 

  • Li, C.P., Zhang, F.R., Kurths, J., Zeng, F.H.: Equivalent system for a multiple-rational-order fractional differential system. Philos. Trans. R. Soc. A 371, 20120156 (2013)

    Article  MathSciNet  Google Scholar 

  • Li, C.P., Li, Z.Q., Wang, Z.: Mathematical analysis and the local discontinuous Galerkin method for Caputo–Hadamard fractional partial differential equation. J. Sci. Comput. 85(2), 41 (2020)

    Article  MathSciNet  Google Scholar 

  • Ma, L., Li, C.P.: On Hadamard fractional calculus. Fractals 25, 1750033 (2017)

    Article  MathSciNet  Google Scholar 

  • Ma, L., Li, C.P.: On finite part integrals and Hadamard-type fractional derivatives. J. Comput. Nonlinear Dyn. 13, 090905 (2018)

    Article  Google Scholar 

  • Machado, J.A.T.: Discrete-time fractional-order controllers. Fract. Calc. Appl. Anal. 4(1), 47–66 (2001)

    MathSciNet  MATH  Google Scholar 

  • Matignon, D.: Stability results for fractional differential equations with applications to control processing. In: Proceedings of the IMACS-SMC, vol. 2, pp. 963–968 (1996)

  • Metzler, R., Klafter, J.: The random Walk’s guide to anomalous diffusion: a fractional dynamic approach. Phys. Rep. 339(1), 1–77 (2000)

    Article  MathSciNet  Google Scholar 

  • Ortigueira, M.D., Machado, J.A.T.: Fractional signal processing and applications. Signal Process. 83(11), 2285–2286 (2003)

    Article  Google Scholar 

  • Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  • Qian, D.L., Li, C.P., Agarwal, R.P., Wong, P.J.Y.: Stability analysis of fractional differential system with Riemann–Liouville derivative. Math. Comput. Model. 52(5), 862–874 (2010)

    Article  MathSciNet  Google Scholar 

  • Sabatier, J., Agrawal, J.A., Tenreiro Machado, J.A. (eds.): Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer, Amsterdam (2007)

    MATH  Google Scholar 

  • Skaar, S.B., Michel, A.N., Miller, R.K.: Stability of viscoelastic control systems. IEEE Trans. Autom. Contr. 33(4), 348–357 (1988)

    Article  MathSciNet  Google Scholar 

  • Sugimoto, N.: Burgers equation with a fractional derivative: hereditary effects on nonlinear acoustic waves. J. Fluid Mech. 225, 631–653 (1991)

    Article  MathSciNet  Google Scholar 

  • Sun, H.G., Zhang, Y., Wei, S., Zhu, J.T., Chen, W.: A space fractional constitutive equation model for non-Newtonian fluid flow. Commun. Nonlinear Sci. Numer. Simul. 62, 409–417 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changpin Li.

Additional information

Communicated by Alain Goriely.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work was partially supported by the National Natural Science Foundation of China under Grant Nos. 11872234 and 11632008.

6 Appendix

6 Appendix

In the Appendix section, we first introduce a modified Laplace transform and a modified Mellin transform. These integral transforms can be used to solve the left and right Riemann–Liouville fractional integral and Riemann–Liouville and Caputo derivatives with starting point a (\(a\in {\mathbb {R}}\), not necessarily the origin) or final point \(b\,(b\in {\mathbb {R}})\). Then, we discuss their properties. These integral transforms are displayed just for reference of the interested readers.

Definition 6.1

(Kilbas et al. 2006; Li and Cai 2019) The left and right Riemann–Liouville fractional integrals of order \(\alpha \,(\alpha >0)\) are defined, respectively, by

$$\begin{aligned} _{RL}\mathrm{{D}}^{-\alpha }_{a,t}f(t)=\frac{1}{\Gamma (\alpha )}\int _{a}^{t} (t-\tau )^{-(1-\alpha )}f(\tau )\mathrm{{d}}\tau ,\,t>a,\,a\in {\mathbb {R}}, \end{aligned}$$
(6.1)

and

$$\begin{aligned} _{RL}\mathrm{{D}}^{-\alpha }_{t,b}f(t)=\frac{1}{\Gamma (\alpha )}\int _{t}^{b} (\tau -t)^{-(1-\alpha )}f(\tau )\mathrm{{d}}\tau ,\,t<b,\,b\in {\mathbb {R}}. \end{aligned}$$
(6.2)

Definition 6.2

(Kilbas et al. 2006; Li and Cai 2019) The left and right Riemann–Liouville fractional derivatives of order \(\alpha \,(n-1<\alpha <n\in {\mathbb {Z}}^+)\) are defined, respectively, by

$$\begin{aligned} _{RL}\mathrm{{D}}_{a,t}^{\alpha }f(t)&=\frac{\mathrm{{d}}^{n}}{\mathrm{{d}}t^{n}} \left( \,_{RL}\mathrm{{D}}_{a,t}^{-(n-\alpha )}f(t)\right) \nonumber \\&=\frac{1}{\Gamma (n-\alpha )}\frac{\mathrm{{d}}^{n}}{\mathrm{{d}}t^{n}}\int _{a}^{t} (t-\tau )^{n-\alpha -1}f(\tau )\mathrm{{d}}\tau ,\, t>a,\,a\in {\mathbb {R}}, \end{aligned}$$
(6.3)

and

$$\begin{aligned} _{RL}\mathrm{{D}}_{t,b}^{\alpha }f(t)&=(-1)^{n}\frac{\mathrm{{d}}^{n}}{\mathrm{{d}}t^{n}} \left( \,_{RL}\mathrm{{D}}_{t,b}^{-(n-\alpha )}f(t)\right) \nonumber \\&=\frac{(-1)^{n}}{\Gamma (n-\alpha )}\frac{\mathrm{{d}}^{n}}{\mathrm{{d}}t^{n}}\int _{t}^{b} (\tau -t)^{n-\alpha -1}f(\tau )\mathrm{{d}}\tau ,\, t<b,\,b\in {\mathbb {R}}. \end{aligned}$$
(6.4)

Definition 6.3

(Kilbas et al. 2006; Li and Cai 2019) The left and right Caputo fractional derivatives of order \(\alpha \,(n-1<\alpha <n\in {\mathbb {Z}}^+)\) are defined by

$$\begin{aligned} _{C}\mathrm{{D}}^{\alpha }_{a,t}f(t)&= \,_{RL}\mathrm{{D}}_{a,t}^{-(n-\alpha )}f^{(n)}(t)\nonumber \\&=\frac{1}{\Gamma (n-\alpha )}\int _{a}^{t} (t-\tau )^{n-\alpha -1}f^{(n)}(\tau ) \mathrm{{d}}\tau ,\, t>a,\,a\in {\mathbb {R}}, \end{aligned}$$
(6.5)

and

$$\begin{aligned} _{C}\mathrm{{D}}^{\alpha }_{t,b}f(t)&=(-1)^{n} \,_{RL}\mathrm{{D}}_{t,b}^{-(n-\alpha )}f^{(n)}(t)\nonumber \\&=\frac{(-1)^{n}}{\Gamma (n-\alpha )}\int _{t}^{b} (\tau -t)^{n-\alpha -1}f^{(n)}(\tau ) \mathrm{{d}}\tau ,\, t<b,\,b\in {\mathbb {R}}. \end{aligned}$$
(6.6)

1.1 6.1 The Modified Laplace Transform

Now we introduce the following left and right modified Laplace transforms.

Definition 6.4

Suppose that the given function f(t) is defined on \([a, +\infty )\, (a\in {\mathbb {R}})\). The left modified Laplace transform of f(t) is defined as

$$\begin{aligned} {\widetilde{f}}(s)={\mathscr {L}}_{lm}\{f(t)\} =\int _{a}^{\infty }e^{-s(t-a)}f(t) \mathrm{{d}}t,\,a\in {\mathbb {R}},\,s\in {\mathbb {C}}. \end{aligned}$$
(6.7)

The inverse left modified Laplace transform is given by

$$\begin{aligned} f(t)={\mathscr {L}}^{-1}_{lm}\{{\widetilde{f}}(s)\}=\frac{1}{2\pi i} \int _{c-i\infty }^{c+i\infty } e^{s(t-a)}{\widetilde{f}}(s)\mathrm{{d}}s,\, c>0,\, i^{2}=-1. \end{aligned}$$
(6.8)

The left modified Laplace transform defined by (6.7) is a special case of the generalized Laplace transform given by Definition 3.1 in Jarad and Abdeljawad (2020).

Definition 6.5

Suppose that the given function f(t) is defined on \((-\infty , b]\, (b\in {\mathbb {R}})\), the right modified Laplace transform of f(t) is defined as

$$\begin{aligned} {\widetilde{f}}(s)={\mathscr {L}}_{rm}\{f(t)\} =\int _{-\infty }^{b}e^{-s(b-t)}f(t) \mathrm{{d}}t,\,b\in {\mathbb {R}},\,s\in {\mathbb {C}}. \end{aligned}$$
(6.9)

The inverse right modified Laplace transform is given by

$$\begin{aligned} f(t)={\mathscr {L}}^{-1}_{rm}\{{\widetilde{f}}(s)\}=\frac{1}{2\pi i} \int _{c-i\infty }^{c+i\infty } e^{s(b-t)}{\widetilde{f}}(s)\mathrm{{d}}s,\, c>0,\, i^{2}=-1. \end{aligned}$$
(6.10)

In the following, we present the conditions for the existence of the modified Laplace transforms.

Theorem 6.1

Assume that the given function f(t) is defined on \([a, +\infty )\, (a\in {\mathbb {R}})\). If

(1) f(t) is continuous or piecewise continuous on every finite subinterval of \([a, +\infty )\),

(2) there exist positive constants \(M>0\) and \(\sigma >0\) such that for the given \(T>a\),

$$\begin{aligned} |f(t)|\le M e^{\sigma (t-a)},\, \text{ when }\ t>T, \end{aligned}$$

then the left modified Laplace transform of f(t) exists with \(\mathrm{{Re}}(s)>\sigma \).

Proof

In view of Definition 6.4 and the above conditions (1) and (2), one has

$$\begin{aligned} |{\widetilde{f}}(s)|&\le \int _{a}^{\infty } e^{-|s|(t-a)}|f(t)|\mathrm{{d}}t \le \int _{a}^{\infty }e^{-|s|(t-a)}M e^{\sigma (t-a)}\mathrm{{d}}t\\&= M\int _{a}^{\infty }e^{-(|s|-\sigma )(t-a)}\mathrm{{d}}t = \frac{M}{|s|-\sigma }. \end{aligned}$$

This proves the conclusion. \(\square \)

Theorem 6.2

Assume that the given function f(t) is defined on \((-\infty , b]\, (b\in {\mathbb {R}})\). If

(1) f(t) is continuous or piecewise continuous on every finite subinterval of \((-\infty , b]\),

(2) there exist positive constants \(M>0\) and \(\sigma >0\) such that for the given \(T'<b\),

$$\begin{aligned} |f(t)|\le M e^{\sigma (b-t)},\, \text{ when }\ t<T', \end{aligned}$$

then the right modified Laplace transform of f(t) exists with \(\mathrm{{Re}}(s)>\sigma \).

Proof

By means of Definition 6.5 and the above conditions (1) and (2), one gets

$$\begin{aligned} |{\widetilde{f}}(s)|&\le \int _{-\infty }^{b} e^{-|s|(b-t)}|f(t)|\mathrm{{d}}t \le \int _{-\infty }^{b}e^{-|s|(b-t)}M e^{\sigma (b-t)}\mathrm{{d}}t\\&= M\int _{-\infty }^{b}e^{-(|s|-\sigma )(b-t)}\mathrm{{d}}t = \frac{M}{|s|-\sigma }. \end{aligned}$$

The result is thus proved. \(\square \)

Definition 6.6

For the given functions f(t) and g(t) defined on \([a, +\infty )\, (a\in {\mathbb {R}})\), the integral \(\int _{a}^{t}f(a+t-\tau )g(\tau )\mathrm{{d}}\tau \) is called the left convolution of f(t) and g(t), i.e.

$$\begin{aligned} f(t)*_{l}g(t)=(f*_{l}g)(t)=\int _{a}^{t}f(a+t-\tau )g(\tau )\mathrm{{d}}\tau . \end{aligned}$$

Theorem 6.3

(Left convolution theorem) If \({\mathscr {L}}_{lm}\{f(t)\}={\widetilde{f}}(s)\) and \({\mathscr {L}}_{lm}\{g(t)\}={\widetilde{g}}(s)\), then

$$\begin{aligned} {\mathscr {L}}_{lm}\{f(t)*_{l}g(t)\}={\mathscr {L}}_{lm}\{f(t)\}{\mathscr {L}}_{lm}\{g(t)\} ={\widetilde{f}}(s){\widetilde{g}}(s); \end{aligned}$$

Or equivalently,

$$\begin{aligned} {\mathscr {L}}_{lm}^{-1}\{{\widetilde{f}}(s){\widetilde{g}}(s)\}=f(t)*_{l}g(t). \end{aligned}$$

Proof

According to Definitions 6.4 and 6.6, and interchanging the order of integration, one gets

$$\begin{aligned} {\mathscr {L}}_{lm}\{f(t)*_{l}g(t)\}&=\int _{a}^{\infty }e^{-s(t-a)} \int _{a}^{t}f(a+t-\tau )g(\tau )\mathrm{{d}}\tau \mathrm{{d}}t\\&=\int _{a}^{\infty }\int _{\tau }^{\infty }e^{-s(t-a)} f(a+t-\tau )g(\tau )\mathrm{{d}}t\mathrm{{d}}\tau \\&=\int _{a}^{\infty }\int _{a}^{\infty }e^{-s(\tau +w-2a)} f(w)g(\tau )\mathrm{{d}}w\mathrm{{d}}\tau \\&={\mathscr {L}}_{lm}\{f(t)\}{\mathscr {L}}_{lm}\{g(t)\} ={\widetilde{f}}(s){\widetilde{g}}(s), \end{aligned}$$

in which the change of variable \(a+t-\tau =w\) is used. \(\square \)

Definition 6.7

For the given functions f(t) and g(t) defined on \((-\infty , b]\, (b\in {\mathbb {R}})\), the integral \(\int _{t}^{b}f(b+t-\tau )g(\tau )\mathrm{{d}}\tau \) is called the right convolution of f(t) and g(t), i.e.

$$\begin{aligned} f(t)*_{r}g(t)=(f*_{r}g)(t)=\int _{t}^{b}f(b+t-\tau )g(\tau )\mathrm{{d}}\tau . \end{aligned}$$

Theorem 6.4

(Right convolution theorem) If \({\mathscr {L}}_{rm}\{f(t)\}={\widetilde{f}}(s)\) and \({\mathscr {L}}_{rm}\{g(t)\}={\widetilde{g}}(s)\), then

$$\begin{aligned} {\mathscr {L}}_{rm}\{f(t)*_{r}g(t)\}={\mathscr {L}}_{rm}\{f(t)\}{\mathscr {L}}_{rm}\{g(t)\} ={\widetilde{f}}(s){\widetilde{g}}(s); \end{aligned}$$

Or equivalently,

$$\begin{aligned} {\mathscr {L}}_{rm}^{-1}\{{\widetilde{f}}(s){\widetilde{g}}(s)\}=f(t)*_{r}g(t). \end{aligned}$$

Proof

Taking into account Definitions 6.5 and 6.7, and interchanging the order of integration, one has

$$\begin{aligned} {\mathscr {L}}_{lm}\{f(t)*_{r}g(t)\}&=\int _{-\infty }^{b}e^{-s(b-t)} \int _{t}^{b}f(b+t-\tau )g(\tau )\mathrm{{d}}\tau \mathrm{{d}}t\\&=\int _{-\infty }^{b}\int _{-\infty }^{b}e^{-s(2b-\tau -w)} f(w)g(\tau )\mathrm{{d}}w\mathrm{{d}}\tau \\&={\mathscr {L}}_{rm}\{f(t)\}{\mathscr {L}}_{rm}\{g(t)\} ={\widetilde{f}}(s){\widetilde{g}}(s), \end{aligned}$$

where the change of variable \(b+t-\tau =w\) is used. \(\square \)

We now present the differential property.

Lemma 6.1

If \({\mathscr {L}}_{lm}\{f(t)\}={\widetilde{f}}(s)\), then

$$\begin{aligned} {\mathscr {L}}_{lm}\{f^{(n)}(t)\} =s^{n}{\widetilde{f}}(s)-\sum _{k=0}^{n-1}s^{n-k-1}f^{(n)}(a),\,t>a,\, n \in {\mathbb {Z}}^{+}. \end{aligned}$$
(6.11)

If \({\mathscr {L}}_{rm}\{f(t)\}={\widetilde{f}}(s)\), then

$$\begin{aligned} {\mathscr {L}}_{rm}\{f^{(n)}(t)\} =\sum _{k=0}^{n-1}s^{n-k-1}f^{(k)}(b)-s^{n}{\widetilde{f}}(s),\,t<b,\, n \in {\mathbb {Z}}^{+}. \end{aligned}$$
(6.12)

Proof

The proof can be done by integration by parts. \(\square \)

Next, we can find the modified Laplace transform for Definitions 6.16.3.

Theorem 6.5

Let \(n-1<\alpha <n\in {\mathbb {Z}}^+\) and \(a\in {\mathbb {R}}\). Then, there hold:

$$\begin{aligned}&{\mathscr {L}}_{lm}\{_{RL}\mathrm{{D}}_{a,t}^{-\alpha }f(t)\} =s^{-\alpha }{\mathscr {L}}_{lm}\{f(t)\}, \end{aligned}$$
(6.13)
$$\begin{aligned}&{\mathscr {L}}_{lm}\{_{RL}\mathrm{{D}}_{a,t}^{\alpha }f(t)\} =s^{\alpha }{\mathscr {L}}_{lm}\{f(t)\} -\sum _{k=0}^{n-1}s^{n-k-1}\, _{RL}\mathrm{{D}}_{a,t}^{\alpha +k-n}f(t)\Big |_{t=a}, \end{aligned}$$
(6.14)
$$\begin{aligned}&{\mathscr {L}}_{lm}\{_{C}\mathrm{{D}}_{a,t}^{\alpha }f(t)\} =s^{\alpha }{\mathscr {L}}_{lm}\{f(t)\} -\sum _{k=0}^{n-1}s^{\alpha -k-1}f^{(k)}(a). \end{aligned}$$
(6.15)

Proof

According to Definitions 6.1 and 6.6, Riemann–Liouville integral can be represented convolution form as follows:

$$\begin{aligned} _{RL}\mathrm{{D}}_{a,t}^{-\alpha }f(t)=\frac{1}{\Gamma (\alpha )}\int _{a}^{t} (t-\tau )^{-(1-\alpha )}f(\tau )\mathrm{{d}}\tau =\frac{(t-a)^{\alpha -1}}{\Gamma (\alpha )}*_{l}f(t). \end{aligned}$$

From Theorem 6.3, it holds that

$$\begin{aligned} {\mathscr {L}}_{lm}\{_{RL}\mathrm{{D}}_{a,t}^{-\alpha }f(t)\} ={\mathscr {L}}_{lm}\left\{ \frac{(t-a)^{\alpha -1}}{\Gamma (\alpha )}*_{l}f(t)\right\} =s^{-\alpha }{\mathscr {L}}_{lm}\{f(t)\}, \end{aligned}$$

which gives equality (6.13).

We prove (6.14). By using equality (6.3) and differential property (6.11), one gets

$$\begin{aligned} {\mathscr {L}}_{lm}\{_{RL}\mathrm{{D}}_{a,t}^{\alpha }f(t)\}&={\mathscr {L}}_{lm}\left\{ \frac{\mathrm{{d}}^{n}}{\mathrm{{d}}t^{n}} \left( _{RL}\mathrm{{D}}_{a,t}^{-(n-\alpha )}f(t)\right) \right\} \\&=s^{n}{\mathscr {L}}_{lm}\{_{RL}\mathrm{{D}}_{a,t}^{-(n-\alpha )}f(t)\} -\sum _{k=0}^{n-1}s^{n-k-1}\frac{\mathrm{{d}}^{k}}{\mathrm{{d}}t^{k}} \left( _{RL}\mathrm{{D}}_{a,t}^{-(n-\alpha )}f(t)\right) \Big |_{t=a}\\&=s^{\alpha }{\mathscr {L}}_{lm}\{f(t)\} -\sum _{k=0}^{n-1}s^{n-k-1}\, _{RL}\mathrm{{D}}_{a,t}^{\alpha +k-n}f(t)\Big |_{t=a}. \end{aligned}$$

To prove (6.15), using equalities (6.5), (6.13), and differential property (6.11) yields

$$\begin{aligned} {\mathscr {L}}_{lm}\{_{C}\mathrm{{D}}_{a,t}^{\alpha }f(t)\}&={\mathscr {L}}_{lm}\{_{C}\mathrm{{D}}_{a,t}^{-(n-\alpha )}f^{(n)}(t)\} =s^{\alpha -n}{\mathscr {L}}_{lm}\{f^{(n)}(t)\}\\&=s^{\alpha -n}\left[ s^{n}{\mathscr {L}}_{lm}\{f(t)\} -\sum _{k=0}^{n-1}s^{n-k-1}f^{(k)}(a)\right] \\&=s^{\alpha }{\mathscr {L}}_{lm}\{f(t)\} -\sum _{k=0}^{n-1}s^{\alpha -k-1}f^{(k)}(a). \end{aligned}$$

The proof is completed. \(\square \)

Theorem 6.6

Let \(n-1<\alpha <n\in {\mathbb {Z}}^+\) and \(b\in {\mathbb {R}}\). Then, there hold:

$$\begin{aligned}&{\mathscr {L}}_{rm}\{_{RL}\mathrm{{D}}_{t,b}^{-\alpha }f(t)\} =s^{-\alpha }{\mathscr {L}}_{rm}\{f(t)\}, \end{aligned}$$
(6.16)
$$\begin{aligned}&{\mathscr {L}}_{rm}\{_{RL}\mathrm{{D}}_{t,b}^{\alpha }f(t)\} =(-1)^{n}\left[ \sum _{k=0}^{n-1}s^{n-k-1}\, _{RL}\mathrm{{D}}_{t,b}^{\alpha +k-n}f(t)\Big |_{t=b} -s^{\alpha }{\mathscr {L}}_{rm}\{f(t)\}\right] , \end{aligned}$$
(6.17)
$$\begin{aligned}&{\mathscr {L}}_{rm}\{_{C}\mathrm{{D}}_{t,b}^{\alpha }f(t)\} =(-1)^{n}\left[ \sum _{k=0}^{n-1}s^{\alpha -k-1}f^{(k)}(b) -s^{\alpha }{\mathscr {L}}_{rm}\{f(t)\}\right] . \end{aligned}$$
(6.18)

Proof

In term of Definitions 6.1 and 6.7, Riemann–Liouville integral can be rewritten in the following convolution form:

$$\begin{aligned} _{RL}\mathrm{{D}}_{t,b}^{-\alpha }f(t)=\frac{1}{\Gamma (\alpha )}\int _{t}^{b} (\tau -t)^{-(1-\alpha )}f(\tau )\mathrm{{d}}\tau =\frac{(b-t)^{\alpha -1}}{\Gamma (\alpha )}*_{r}f(t). \end{aligned}$$

It follows from Theorem 6.4 that

$$\begin{aligned} {\mathscr {L}}_{rm}\{_{RL}\mathrm{{D}}_{t,b}^{-\alpha }f(t)\} ={\mathscr {L}}_{rm}\left\{ \frac{(b-t)^{\alpha -1}}{\Gamma (\alpha )}*_{r}f(t)\right\} =s^{-\alpha }{\mathscr {L}}_{rm}\{f(t)\}, \end{aligned}$$

which is (6.16).

We give the proof of (6.17). Recalling equality (6.4) and differential property (6.12), one has

$$\begin{aligned}&{\mathscr {L}}_{rm}\{_{RL}\mathrm{{D}}_{t,b}^{\alpha }f(t)\}\\&\quad =(-1)^{n}\left[ {\mathscr {L}}_{rm}\left\{ \frac{\mathrm{{d}}^{n}}{\mathrm{{d}}t^{n}} \left( _{RL}\mathrm{{D}}_{t,b}^{-(n-\alpha )}f(t)\right) \right\} \right] \\&\quad =(-1)^{n}\left[ \sum _{k=0}^{n-1}s^{n-k-1}\frac{\mathrm{{d}}^{k}}{\mathrm{{d}}t^{k}} \left( _{RL}\mathrm{{D}}_{t,b}^{-(n-\alpha )}f(t)\right) \Big |_{t=b} -s^{n}{\mathscr {L}}_{rm}\{_{RL}\mathrm{{D}}_{t,b}^{-(n-\alpha )}f(t)\}\right] \\&\quad =(-1)^{n}\left[ \sum _{k=0}^{n-1}s^{n-k-1}\, _{RL}\mathrm{{D}}_{t,b}^{\alpha +k-n}f(t)\Big |_{t=b} -s^{\alpha }{\mathscr {L}}_{rm}\{f(t)\}\right] . \end{aligned}$$

For (6.18), employing equalities (6.6), (6.16), and differential property (6.12) gives

$$\begin{aligned} {\mathscr {L}}_{rm}\{_{C}\mathrm{{D}}_{t,b}^{\alpha }f(t)\}&=(-1)^{n}{\mathscr {L}}_{rm}\{_{C}\mathrm{{D}}_{t,b}^{-(n-\alpha )}f^{(n)}(t)\} =(-1)^{n}s^{\alpha -n}{\mathscr {L}}_{rm}\{f^{(n)}(t)\}\\&=(-1)^{n}s^{\alpha -n}\left[ \sum _{k=0}^{n-1}s^{n-k-1}f^{(k)}(b) -s^{n}{\mathscr {L}}_{rm}\{f(t)\}\right] \\&=(-1)^{n}\left[ \sum _{k=0}^{n-1}s^{\alpha -k-1}f^{(k)}(b) -s^{\alpha }{\mathscr {L}}_{rm}\{f(t)\}\right] . \end{aligned}$$

All this ends the proof. \(\square \)

Finally, we present the left and right modified Laplace transform of Mittag–Leffler function. Notice that Podlubny (1999)

$$\begin{aligned} \int _{0}^{\infty }e^{-st}t^{\alpha k+\beta -1} E_{\alpha ,\beta }^{(k)}(\pm \lambda t^{\alpha })\mathrm{{d}}t =\frac{k!s^{\alpha -\beta }}{(s^{\alpha }\mp \lambda )^{k+1}},\, \mathrm{{Re}}(s)>|\lambda |^{\frac{1}{\alpha }}. \end{aligned}$$

Thus, we can obtain

$$\begin{aligned} \int _{a}^{\infty }e^{-s(t-a)}(t-a)^{\alpha k+\beta -1} E_{\alpha ,\beta }^{(k)}(\pm \lambda (t-a)^{\alpha })\mathrm{{d}}t =\frac{k!s^{\alpha -\beta }}{(s^{\alpha }\mp \lambda )^{k+1}},\, \mathrm{{Re}}(s)>|\lambda |^{\frac{1}{\alpha }}, \end{aligned}$$
(6.19)

and

$$\begin{aligned} \int _{-\infty }^{b}e^{-s(b-t)}(b-t)^{\alpha k+\beta -1} E_{\alpha ,\beta }^{(k)}(\pm \lambda (b-t)^{\alpha })\mathrm{{d}}t =\frac{k!s^{\alpha -\beta }}{(s^{\alpha }\mp \lambda )^{k+1}},\, \mathrm{{Re}}(s)>|\lambda |^{\frac{1}{\alpha }}. \end{aligned}$$
(6.20)

1.2 The Modified Mellin Transform

In this subsection, we define a modified Mellin transform and investigate its properties.

Definition 6.8

The left modified Mellin transform of the known function f(t) with \(t\in [a,\infty )\, (a\in {\mathbb {R}})\) is defined by

$$\begin{aligned} F(\xi )={\mathscr {M}}_{lm}\{f(t)\}=\int _{a}^{\infty } (t-a)^{\xi -1}f(t)\mathrm{{d}}t,\,a\in {\mathbb {R}},\, \gamma _{1}<\mathrm{{Re}}(\xi )<\gamma _{2}. \end{aligned}$$
(6.21)

The inverse left modified Mellin transform is given by

$$\begin{aligned} f(t)={\mathscr {M}}_{lm}^{-1}\{F(\xi )\}=\frac{1}{2\pi i} \int _{c-i\infty }^{c+i\infty }(t-a)^{-\xi }F(\xi )\mathrm{{d}}\xi ,\,t>a,\, c=\mathrm{{Re}}(\xi ). \end{aligned}$$
(6.22)

Definition 6.9

The right modified Mellin transform of the known function f(t) with \(t\in [-\infty , b)\, (b\in {\mathbb {R}})\) is defined by

$$\begin{aligned} F(\xi )={\mathscr {M}}_{rm}\{f(t)\}=\int _{-\infty }^{b} (b-t)^{\xi -1}f(t)\mathrm{{d}}t,\,b\in {\mathbb {R}},\, \gamma _{3}<\mathrm{{Re}}(\xi )<\gamma _{4}. \end{aligned}$$
(6.23)

The inverse right modified Mellin transform is given by

$$\begin{aligned} f(t)={\mathscr {M}}_{rm}^{-1}\{F(\xi )\}=\frac{1}{2\pi i} \int _{c-i\infty }^{c+i\infty }(b-t)^{-\xi }F(\xi )\mathrm{{d}}\xi ,\,t<b,\, c=\mathrm{{Re}}(\xi ). \end{aligned}$$
(6.24)

In the sequel, we present the definition of convolution and convolution theorem in the sense of modified Mellin transform.

Definition 6.10

Suppose that functions f(t) and g(t) are defined on \([a, +\infty )\, (a\in {\mathbb {R}})\). The integral \(\int _{a}^{\infty }f\left( a+\frac{t-a}{\tau -a}\right) g(\tau )\frac{\mathrm{{d}}\tau }{\tau -a}\) is called the left convolution of f(t) and g(t), i.e.

$$\begin{aligned} f(t)*_{l}g(t)=(f*_{l}g)(t) =\int _{a}^{\infty }f\left( a+\frac{t-a}{\tau -a}\right) g(\tau )\frac{\mathrm{{d}}\tau }{\tau -a}. \end{aligned}$$

Theorem 6.7

(Left convolution theorem) If \({\mathscr {M}}_{lm}\{f(t)\}=F(\xi )\) and \({\mathscr {M}}_{lm}\{g(t)\}=G(\xi )\), then

$$\begin{aligned} {\mathscr {M}}_{lm}\{f(t)*_{l}g(t)\}={\mathscr {M}}_{lm}\{f(t)\}{\mathscr {M}}_{lm}\{g(t)\} =F(\xi )G(\xi ); \end{aligned}$$

Or equivalently,

$$\begin{aligned} {\mathscr {M}}_{lm}^{-1}\{F(\xi )G(\xi )\}=f(t)*_{l}g(t). \end{aligned}$$

Proof

Noticing that Definitions 6.8 and 6.10, and changing the order of integration, one gets

$$\begin{aligned} {\mathscr {M}}_{lm}\{f(t)*_{l}g(t)\}&=\int _{a}^{\infty }(t-a)^{\xi -1} \int _{a}^{\infty }f\left( a+\frac{t-a}{\tau -a}\right) g(\tau )\frac{\mathrm{{d}}\tau }{\tau -a}\mathrm{{d}}t\\&=\int _{a}^{\infty }\int _{a}^{\infty }(t-a)^{\xi -1} f\left( a+\frac{t-a}{\tau -a}\right) g(\tau )\mathrm{{d}}t\frac{\mathrm{{d}}\tau }{\tau -a}\\&=\int _{a}^{\infty }\int _{a}^{\infty }(w-a)^{\xi -1}(\tau -a)^{\xi -1} f(w)g(\tau )\mathrm{{d}}w\mathrm{{d}}\tau \\&={\mathscr {M}}_{lm}\{f(t)\}{\mathscr {M}}_{lm}\{g(t)\} =F(\xi )G(\xi ), \end{aligned}$$

where the change of variable \(a+\frac{t-a}{\tau -a}=w\) is utilized. \(\square \)

Definition 6.11

Suppose that functions f(t) and g(t) are defined on \((-\infty , b]\, (b\in {\mathbb {R}})\). The integral \(\int _{-\infty }^{b}f\left( b-\frac{b-t}{b-\tau }\right) g(\tau )\frac{\mathrm{{d}}\tau }{b-\tau }\) is called the right convolution of f(t) and g(t), i.e.

$$\begin{aligned} f(t)*_{r}g(t)=(f*_{r}g)(t) =\int _{-\infty }^{b}f\left( b-\frac{b-t}{b-\tau }\right) g(\tau )\frac{\mathrm{{d}}\tau }{b-\tau }. \end{aligned}$$

Theorem 6.8

(Right convolution theorem) If \({\mathscr {M}}_{rm}\{f(t)\}=F(\xi )\) and \({\mathscr {M}}_{rm}\{g(t)\}=G(\xi )\), then

$$\begin{aligned} {\mathscr {M}}_{rm}\{f(t)*_{r}g(t)\}={\mathscr {M}}_{rm}\{f(t)\}{\mathscr {M}}_{rm}\{g(t)\} =F(\xi )G(\xi ); \end{aligned}$$

Or equivalently,

$$\begin{aligned} {\mathscr {M}}_{rm}^{-1}\{F(\xi )G(\xi )\}=f(t)*_{r}g(t). \end{aligned}$$

Proof

According to Definitions 6.9 and 6.11, and interchanging the order of integration, one has

$$\begin{aligned} {\mathscr {M}}_{rm}\{f(t)*_{r}g(t)\}&=\int _{-\infty }^{b}(b-t)^{\xi -1} \int _{-\infty }^{b}f\left( b-\frac{b-t}{b-\tau }\right) g(\tau )\frac{\mathrm{{d}}\tau }{b-\tau }\mathrm{{d}}t\\&={\mathscr {M}}_{rm}\{f(t)\}{\mathscr {M}}_{rm}\{g(t)\} =F(\xi )G(\xi ). \end{aligned}$$

\(\square \)

The following differential property is valid.

Lemma 6.2

If \({\mathscr {M}}_{lm}\{f(t)\}=F(\xi )\) and the limits

$$\begin{aligned}&\lim _{t\rightarrow a^{+}}\left[ (t-a)^{\xi -k-1}f^{(n-k-1)}(t)\right] ,\\&\quad \lim _{t\rightarrow \infty }\left[ (t-a)^{\xi -k-1}f^{(n-k-1)}(t)\right] \ (k=0,1,\ldots ,n-1) \end{aligned}$$

exist, then

$$\begin{aligned} {\mathscr {M}}_{lm}\{f^{(n)}(t)\}= & {} \sum _{k=0}^{n-1}\frac{\Gamma (1+k-\xi )}{\Gamma (1-\xi )}\left[ (t-a)^{\xi -k-1} f^{(n-k-1)}(t)\right] \Big |_{a}^{\infty }\nonumber \\&+\frac{\Gamma (1+n-\xi )}{\Gamma (1-\xi )}F(\xi -n),\,t>a,\, n \in {\mathbb {Z}}^{+}. \end{aligned}$$
(6.25)

If \({\mathscr {M}}_{rm}\{f(t)\}=F(\xi )\) and the limits

$$\begin{aligned}&\lim _{t\rightarrow b^{-}}\left[ (b-t)^{\xi -k-1}f^{(n-k-1)}(t)\right] ,\\&\quad \lim _{t\rightarrow -\infty }\left[ (b-t)^{\xi -k-1}f^{(n-k-1)}(t)\right] \ (k=0,1,\ldots ,n-1) \end{aligned}$$

exist, then

$$\begin{aligned} {\mathscr {M}}_{rm}\{f^{(n)}(t)\} =&\sum _{k=0}^{n-1}(-1)^{k}\frac{\Gamma (1+k-\xi )}{\Gamma (1-\xi )}\left[ (b-t)^{\xi -k-1} f^{(n-k-1)}(t)\right] \Big |_{-\infty }^{b}\nonumber \\&+(-1)^{n}\frac{\Gamma (1+n-\xi )}{\Gamma (1-\xi )}F(\xi -n),\,t<b,\, n \in {\mathbb {Z}}^{+}. \end{aligned}$$
(6.26)

Proof

Applying repeatedly the formula of integration by parts, we obtain

$$\begin{aligned}&{\mathscr {M}}_{lm}\{f^{(n)}(t)\} =\int _{a}^{\infty }(t-a)^{\xi -1}f^{(n)}(t)\mathrm{{d}}t\\&\quad =(t-a)^{\xi -1}f^{(n-1)}(t)|_{a}^{\infty } +(1-\xi )\int _{a}^{\infty }(t-a)^{\xi -2}f^{(n-1)}(t)\mathrm{{d}}t \\&\quad =(t-a)^{\xi -1}f^{(n-1)}(t)|_{a}^{\infty } +(1-\xi )(t-a)^{\xi -2}f^{(n-2)}(t)|_{a}^{\infty } \\&\qquad +(1-\xi )(2-\xi )\int _{a}^{\infty }(t-a)^{\xi -3}f^{(n-2)}(t)\mathrm{{d}}t\\&\quad =(-1)^{n}\frac{\Gamma (\xi )}{\Gamma (\xi -n)}F(\xi -n) +\sum _{k=0}^{n-1}(-1)^{k}\frac{\Gamma (\xi )}{\Gamma (\xi -k)}\left[ (t-a)^{\xi -k-1} f^{(n-k-1)}(t)\right] \Big |_{a}^{\infty }\\&\quad =\frac{\Gamma (1+n-\xi )}{\Gamma (1-\xi )}F(\xi -n) +\sum _{k=0}^{n-1}\frac{\Gamma (1+k-\xi )}{\Gamma (1-\xi )}\left[ (t-a)^{\xi -k-1} f^{(n-k-1)}(t)\right] \Big |_{a}^{\infty }, \end{aligned}$$

and

$$\begin{aligned}&{\mathscr {M}}_{rm}\{f^{(n)}(t)\} =\int _{-\infty }^{b}(b-t)^{\xi -1}f^{(n)}(t)\mathrm{{d}}t\\&\quad =(b-t)^{\xi -1}f^{(n-1)}(t)|_{-\infty }^{b} +(\xi -1)\int _{-\infty }^{b}(b-t)^{\xi -2}f^{(n-1)}(t)\mathrm{{d}}t\\&\quad =\frac{\Gamma (\xi )}{\Gamma (\xi -n)}F(\xi -n) +\sum _{k=0}^{n-1}\frac{\Gamma (\xi )}{\Gamma (\xi -k)}\left[ (b-t)^{\xi -k-1} f^{(n-k-1)}(t)\right] \Big |_{-\infty }^{b}\\&\quad =(-1)^{n}\frac{\Gamma (1+n-\xi )}{\Gamma (1-\xi )}F(\xi -n)\\&\qquad +\sum _{k=0}^{n-1}(-1)^{k}\frac{\Gamma (1+k-\xi )}{\Gamma (1-\xi )}\left[ (b-t)^{\xi -k-1} f^{(n-k-1)}(t)\right] \Big |_{-\infty }^{b}. \end{aligned}$$

The proof is thus complete. \(\square \)

Finally, we are ready to present the modified Mellin transform for Definitions 6.16.3.

Theorem 6.9

Let \(n-1<\alpha <n\in {\mathbb {Z}}^+\) and \(a\in {\mathbb {R}}\). If \({\mathscr {M}}_{lm}\{f(t)\}=F(\xi )\), \(\alpha <\mathrm{{Re}}(1-\xi )\) and the limits, for \(k=0,1,\ldots ,n-1\),

$$\begin{aligned}&\lim _{t\rightarrow a^{+}}\left[ (t-a)^{\xi -k-1}\,_{RL}\mathrm{{D}}_{a,t}^{\alpha -k-1}f(t)\right] ,\ \ \lim _{t\rightarrow \infty }\left[ (t-a)^{\xi -k-1}\,_{RL}\mathrm{{D}}_{a,t}^{\alpha -k-1}f(t)\right] ,\\&\lim _{t\rightarrow a^{+}}\left[ (t-a)^{\xi -\alpha +k}f^{(k)}(t)\right] ,\ \ \lim _{t\rightarrow \infty }\left[ (t-a)^{\xi -\alpha +k}f^{(k)}(t)\right] \end{aligned}$$

exist, then:

$$\begin{aligned}&{\mathscr {M}}_{lm}\{_{RL}\mathrm{{D}}_{a,t}^{-\alpha }f(t)\} =\frac{\Gamma (1-\xi -\alpha )}{\Gamma (1-\xi )}F(\xi +\alpha ), \end{aligned}$$
(6.27)
$$\begin{aligned}&{\mathscr {M}}_{lm}\{_{RL}\mathrm{{D}}_{a,t}^{\alpha }f(t)\} =\frac{\Gamma (1-\xi +\alpha )}{\Gamma (1-\xi )}F(\xi -\alpha ) \nonumber \\&\ \ \ \ \ +\sum _{k=0}^{n-1}\frac{\Gamma (1+k-\xi )}{\Gamma (1-\xi )} \left[ (t-a)^{\xi -k-1}\, _{RL}\mathrm{{D}}_{a,t}^{\alpha -k-1}f(t)\right] \Big |_{a}^{\infty }, \end{aligned}$$
(6.28)
$$\begin{aligned}&{\mathscr {M}}_{lm}\{_{C}\mathrm{{D}}_{a,t}^{\alpha }f(t)\} =\frac{\Gamma (1-\xi +\alpha )}{\Gamma (1-\xi )}F(\xi -\alpha )\nonumber \\&\ \ \ \ \ +\sum _{k=0}^{n-1}\frac{\Gamma (\alpha -k-\xi )}{\Gamma (1-\xi )}\left[ (t-a)^{\xi -\alpha +k} f^{(k)}(t)\right] \Big |_{a}^{\infty }. \end{aligned}$$
(6.29)

Proof

We first prove (6.27). In term of Definitions 6.1 and 6.8, by interchanging order of integration and using the substitution \(t-\tau =(\tau -a)w\), it yields

$$\begin{aligned} {\mathscr {M}}_{lm}\{_{RL}\mathrm{{D}}_{a,t}^{-\alpha }f(t)\} =&\;\int _{a}^{\infty }(t-a)^{\xi -1}\frac{1}{\Gamma (\alpha )}\int _{a}^{t} (t-\tau )^{\alpha -1}f(\tau )\mathrm{{d}}\tau \mathrm{{d}}t\\ =&\;\frac{1}{\Gamma (\alpha )}\int _{a}^{\infty }\int _{0}^{\infty } (1+w)^{\xi -1}w^{\alpha -1}\mathrm{{d}}w(\tau -a)^{\xi +\alpha -1}f(\tau )\mathrm{{d}}\tau \\ =&\;\frac{\Gamma (1-\xi -\alpha )}{\Gamma (1-\xi )}F(\xi +\alpha ), \end{aligned}$$

where we have used the integral equality \(\int _{0}^{\infty } (1+w)^{\xi -1}w^{\alpha -1}\mathrm{{d}}w=B(\alpha , 1-\xi -\alpha )\). In fact, we have \(\int _{0}^{\infty }(1+w)^{\xi -1}w^{\alpha -1}\mathrm{{d}}w =\int _{1}^{\infty }u^{\xi -1}(u-1)^{\alpha -1}\mathrm{{d}}w =\int _{0}^{1}(1-v)^{\alpha -1}v^{1-\xi -\alpha -1}\mathrm{{d}}w =B(\alpha , 1-\xi -\alpha )\) when \(\alpha <\mathrm{{Re}}(1-\xi )\).

To prove (6.28), denoting \(_{RL}\mathrm{{D}}_{a,t}^{-(n-\alpha )}f(t)=g_{1}(t)\) and exploiting differential property (6.25), one gets

$$\begin{aligned}&{\mathscr {M}}_{lm}\{_{RL}\mathrm{{D}}_{a,t}^{\alpha }f(t)\} ={\mathscr {M}}_{lm}\{\frac{\mathrm{{d}}^{n}}{\mathrm{{d}}t^{n}}\, _{RL}\mathrm{{D}}_{a,t}^{-(n-\alpha )}f(t)\} ={\mathscr {M}}_{lm}\{g_{1}^{(n)}(t)\}\\&\quad =\frac{\Gamma (1-\xi +\alpha )}{\Gamma (1-\xi )}F(\xi -\alpha ) +\sum _{k=0}^{n-1}\frac{\Gamma (1+k-\xi )}{\Gamma (1-\xi )} \left[ (t-a)^{\xi -k-1}\, _{RL}\mathrm{{D}}_{a,t}^{\alpha -k-1}f(t)\right] \Big |_{a}^{\infty }. \end{aligned}$$

We now show (6.29). By using (6.27) and differential property (6.25), and denoting \(f^{(n)}(t)=g_{2}(t)\), there holds

$$\begin{aligned} {\mathscr {M}}_{lm}\{_{C}\mathrm{{D}}_{a,t}^{\alpha }f(t)\} =&{\mathscr {M}}_{lm}\{_{RL}\mathrm{{D}}_{a,t}^{-(n-\alpha )}f^{(n)}(t)\} \\ =&{\mathscr {M}}_{lm}\{_{RL}\mathrm{{D}}_{a,t}^{-(n-\alpha )}g_{2}(t)\} =\frac{\Gamma (1-\xi -n+\alpha )}{\Gamma (1-\xi )}G_{2}(\xi +n-\alpha ) \\ =&\frac{\Gamma (1-\xi +\alpha )}{\Gamma (1-\xi )}F(\xi -\alpha )\\&+\sum _{k=0}^{n-1}\frac{\Gamma (\alpha -k-\xi )}{\Gamma (1-\xi )}\left[ (t-a)^{\xi -\alpha +k} f^{(k)}(t)\right] \Big |_{a}^{\infty }. \end{aligned}$$

We thus complete the proof. \(\square \)

Theorem 6.10

Let \(n-1<\alpha <n\in {\mathbb {Z}}^+\) and \(b\in {\mathbb {R}}\). If \({\mathscr {M}}_{rm}\{f(t)\}=F(\xi )\), \(\alpha <\mathrm{{Re}}(1-\xi )\) and the limits, for \(k=0,1,\ldots ,n-1\),

$$\begin{aligned}&\lim _{t\rightarrow b^{-}}\left[ (b-t)^{\xi -k-1}\,_{RL}\mathrm{{D}}_{t,b}^{\alpha -k-1}f(t)\right] ,\ \ \lim _{t\rightarrow -\infty }\left[ (b-t)^{\xi -k-1}\,_{RL}\mathrm{{D}}_{t,b}^{\alpha -k-1}f(t)\right] ,\\&\lim _{t\rightarrow b^{-}}\left[ (b-t)^{\xi -\alpha +k}f^{(k)}(t)\right] ,\ \ \lim _{t\rightarrow -\infty }\left[ (b-t)^{\xi -\alpha +k}f^{(k)}(t)\right] \ \end{aligned}$$

exist, then:

$$\begin{aligned}&{\mathscr {M}}_{rm}\{_{RL}\mathrm{{D}}_{t,b}^{-\alpha }f(t)\} =\frac{\Gamma (1-\xi -\alpha )}{\Gamma (1-\xi )}F(\xi +\alpha ), \end{aligned}$$
(6.30)
$$\begin{aligned}&{\mathscr {M}}_{rm}\{_{RL}\mathrm{{D}}_{t,b}^{\alpha }f(t)\} =\frac{\Gamma (1-\xi +\alpha )}{\Gamma (1-\xi )}F(\xi -\alpha ) \nonumber \\&\ \ \ \ \ +\sum _{k=0}^{n-1}(-1)^{k+n}\frac{\Gamma (1+k-\xi )}{\Gamma (1-\xi )} \left[ (b-t)^{\xi -k-1}\, _{RL}\mathrm{{D}}_{t,b}^{\alpha -k-1}f(t)\right] \Big |_{-\infty }^{b}, \end{aligned}$$
(6.31)
$$\begin{aligned}&{\mathscr {M}}_{rm}\{_{C}\mathrm{{D}}_{t,b}^{\alpha }f(t)\} =\frac{\Gamma (1-\xi +\alpha )}{\Gamma (1-\xi )}F(\xi -\alpha )\nonumber \\&\ \ \ \ \ +\sum _{k=0}^{n-1}(-1)^{k+n}\frac{\Gamma (\alpha -k-\xi )}{\Gamma (1-\xi )}\left[ (b-t)^{\xi -\alpha +k} f^{(k)}(t)\right] \Big |_{-\infty }^{b}. \end{aligned}$$
(6.32)

Proof

We start with the proof of (6.30). According to Definitions 6.1 and 6.9, by interchanging order of integration and using the substitution \(\tau -t=(b-\tau )w\), one has

$$\begin{aligned} {\mathscr {M}}_{rm}\{_{RL}\mathrm{{D}}_{t,b}^{-\alpha }f(t)\}&=\int _{-\infty }^{b}(b-t)^{\xi -1}\frac{1}{\Gamma (\alpha )}\int _{t}^{b} (\tau -t)^{\alpha -1}f(\tau )\mathrm{{d}}\tau \mathrm{{d}}t\\&=\frac{1}{\Gamma (\alpha )}\int _{-\infty }^{b}\int _{0}^{\infty } (1+w)^{\xi -1}w^{\alpha -1}\mathrm{{d}}w(b-\tau )^{\xi +\alpha -1}f(\tau )\mathrm{{d}}\tau \\&=\frac{\Gamma (1-\xi -\alpha )}{\Gamma (1-\xi )}F(\xi +\alpha ). \end{aligned}$$

Now we deal with (6.31). Letting \(_{RL}\mathrm{{D}}_{t,b}^{-(n-\alpha )}f(t)=h_{1}(t)\), it follows from differential property (6.26) that

$$\begin{aligned}&{\mathscr {M}}_{rm}\{_{RL}\mathrm{{D}}_{t,b}^{\alpha }f(t)\} =(-1)^{n}{\mathscr {M}}_{rm}\{\frac{\mathrm{{d}}^{n}}{\mathrm{{d}}t^{n}}\, _{RL}\mathrm{{D}}_{t,b}^{-(n-\alpha )}f(t)\} =(-1)^{n}{\mathscr {M}}_{rm}\{h_{1}^{(n)}(t)\} \\&\quad =\frac{\Gamma (1-\xi +\alpha )}{\Gamma (1-\xi )}F(\xi -\alpha )\\&\qquad +\sum _{k=0}^{n-1}(-1)^{k+n}\frac{\Gamma (1+k-\xi )}{\Gamma (1-\xi )} \left[ (b-t)^{\xi -k-1}\, _{RL}\mathrm{{D}}_{t,b}^{\alpha -k-1}f(t)\right] \Big |_{-\infty }^{b}. \end{aligned}$$

Finally, we prove (6.32). Observing that (6.30) and differential property (6.26), and denoting \(f^{(n)}(t)=h_{2}(t)\), it holds that

$$\begin{aligned}&{\mathscr {M}}_{rm}\{_{C}\mathrm{{D}}_{t,b}^{\alpha }f(t)\} =(-1)^{n}{\mathscr {M}}_{rm}\{_{RL}\mathrm{{D}}_{t,b}^{-(n-\alpha )}f^{(n)}(t)\} \\&\quad =(-1)^{n}{\mathscr {M}}_{rm}\{_{RL}\mathrm{{D}}_{t,b}^{-(n-\alpha )}h_{2}(t)\} =(-1)^{n}\frac{\Gamma (1-\xi -n+\alpha )}{\Gamma (1-\xi )}H_{2}(\xi +n-\alpha ) \\&\quad =\frac{\Gamma (1-\xi +\alpha )}{\Gamma (1-\xi )}F(\xi -\alpha ) +\sum _{k=0}^{n-1}(-1)^{k+n}\frac{\Gamma (\alpha -k-\xi )}{\Gamma (1-\xi )}\left[ (b-t)^{\xi -\alpha +k} f^{(k)}(t)\right] \Big |_{-\infty }^{b}. \end{aligned}$$

Hence, we complete the proof of lemma.\(\square \)

Except Definitions 6.16.3, the other definitions and results seem to be novel. These definitions and conclusions are very useful in analyzing linear fractional differential equations with left (right) Riemann–Liouville or left (right) Caputo derivatives. We would like to list them here for reference of interested readers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Li, Z. Stability and Logarithmic Decay of the Solution to Hadamard-Type Fractional Differential Equation. J Nonlinear Sci 31, 31 (2021). https://doi.org/10.1007/s00332-021-09691-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-021-09691-8

Keywords

Navigation