Skip to main content
Log in

Instability of Unidirectional Flows for the 2D Navier–Stokes Equations and Related \(\alpha \)-Models

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We study instability of unidirectional flows for the linearized 2D Navier–Stokes equations on the torus. Unidirectional flows are steady states whose vorticity is given by Fourier modes corresponding to a single vector \({\mathbf {p}} \in {\mathbb {Z}}^{2}\). Using Fourier series and a geometric decomposition allows us to decompose the linearized operator \(L_{B}\) acting on the space \(\ell ^{2}({\mathbb {Z}}^{2})\) about this steady state as a direct sum of linear operators \(L_{B,{\mathbf {q}}}\) acting on \(\ell ^{2}({\mathbb {Z}})\) parametrized by some vectors \({\mathbf {q}}\in {\mathbb {Z}}^2\). Using the method of continued fractions we prove that the linearized operator \(L_{B,{\mathbf {q}}}\) about this steady state has an eigenvalue with positive real part thereby implying exponential instability of the linearized equations about this steady state. We further obtain a characterization of unstable eigenvalues of \(L_{B,{\mathbf {q}}}\) in terms of the zeros of a perturbation determinant (Fredholm determinant) associated with a trace class operator \(K_{\lambda }\). We also extend our main instability result to cover regularized variants (involving a parameter \(\alpha >0\)) of the Navier–Stokes equations, namely the second grade fluid model, the Navier–Stokes-\(\alpha \) and the Navier–Stokes–Voigt models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. A derivation of the equation analogous to (1.3) for the Euler equation (\(\nu =0\)) is given in Lemma 6.1 in the Appendix of [7]. The arguments therein can be adapted to derive (1.3) from (1.1). Since \(\omega =-\Delta \psi \), the Fourier modes of \(\omega \) and \(\psi \) satisfy the relation \(\omega _{{\mathbf {k}}}=\Vert {\mathbf {k}}\Vert ^{2}\psi _{{\mathbf {k}}}\). One then uses the formula \({\mathbf {u}} = (\psi _{y},-\psi _{x})\) and the relation \(\psi _{{\mathbf {k}}} = \Vert {\mathbf {k}}\Vert ^{-2}\omega _{{\mathbf {k}}}\) to obtain the Fourier modes of \({\mathbf {u}}\), see again, Lemma 6.1 in the Appendix of [7].

References

  1. Albanez, D., Nussenzveig-Lopes, H.J., Titi, E.S.: Continuous data assimilation for the three-dimensional Navier–Stokes \(\alpha \)-model. Asymptot. Anal. 97(1–2), 139–164 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Beck, M., Wayne, C.E.: Metastability and rapid convergence to quasi-stationary bar states for the two-dimensional Navier–Stokes equations. Proc. R. Soc. Edinb. Sect. A Math. 143, 905–927 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Belenkaya, L., Friedlander, S., Yudovich, V.: The unstable spectrum of oscillating shear flows. SIAM J. App. Math. 59(5), 1701–1715 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berselli, L.C., Bisconti, L.: On the structural stability of the Euler–Voigt and Navier–Stokes–Voigt models. Nonlinear Anal. Theory Methods Appl. 75(1), 117–130 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, S., Foias, C., Holm, D., Olson, E., Titi, E., Wynne, S.: Camassa–Holm equations as a closure model for turbulent channel and pipe flow. Phys. Rev. Lett. 81(24), 5338–5341 (1998)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  6. Coti Zelati, M., Elgindi, T.E., Widmayer, K.: Stationary Structures near the Kolmogorov and Poiseuille Flows in the 2D Euler Equations.arXiv:2007.11547

  7. Dullin, H., Latushkin, Y., Marangell, R., Vasudevan, S., Worthington, J.: Instability of the unidirectional flows for the 2D \(\alpha \)-Euler equations. Commun. Pure Appl. Anal. 19(4), 2051–2079 (2020)

    MathSciNet  MATH  Google Scholar 

  8. Dullin, H.R., Marangell, R., Worthington, J.: Instability of equilibria for the 2D Euler equations on the torus. SIAM J. Appl. Math. 76(4), 1446–1470 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dullin, H.R., Worthington, J.: Stability results for idealized shear flows on a rectangular periodic domain. J. Math. Fluid Mech. 20(2), 473–484 (2018)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  10. Foias, C., Holm, D.D., Titi, E.S.: The Navier–Stokes alpha model of fluid turbulence. Physica D 152–153, 505–519 (2001)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  11. Frenkel, A.L.: Stability of an oscillating Kolmogorov flow. Phys. Fluids A 3(7), 1718–1729 (1991)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  12. Frenkel, A.L., Zhang, X.: Large-scale instability of generalized oscillating Kolmogorov flows. SIAM J. Appl. Math. 58(2), 540–564 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Friedlander, S., Howard, L.: Instability in parallel flows revisited. Stud. Appl. Math. 101(1), 1–21 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Friedlander, S., Strauss, W., Vishik, M.: Nonlinear instability in an ideal fluid. Ann. Inst. Poincare 14(2), 187–209 (1997)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  15. Friedlander, S., Vishik, M., Yudovich, V.: Unstable eigenvalues associated with inviscid fluid flows. J. Math. Fluid Mech. 2(4), 365–380 (2000)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. Gesztesy, F., Makarov, K.: (Modified) Fredholm determinants for operators with matrix-valued semi-separable integral kernels revisited. Integr. Equ. Oper. Theory 48, 561–602 (2004)

    Article  MATH  Google Scholar 

  17. Gesztesy, F., Latushkin, Y., Makarov, K.: Evans functions, Jost functions, and Fredholm determinants. Arch. Ration. Mech. Anal. 186, 361–421 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gohberg, I., Goldberg, S., Kaashoek, M.A.: Classes of Linear Operators, vol. I. Birkhauser Verlag, Basel (1990)

    Book  MATH  Google Scholar 

  19. Holm, D., Marsden, J., Ratiu, T.: The Euler Poincare equations and semidirect products with applications to continuum theories. Adv. Math. 137(1), 1–81 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Holm, D., Marsden, J., Ratiu, T.: Euler–Poincare models of ideal fluids with nonlinear dispersion. Phys. Rev. Lett. 80(19), 4173–4176 (1998)

    Article  ADS  Google Scholar 

  21. Jones, W.B., Thron, W.J.: Continued Fractions: Analytic Theory and Applications. Cambridge University Press, Cambridge (1984)

    Book  MATH  Google Scholar 

  22. Latushkin, Y., Li, Y.C., Stanislavova, M.: The spectrum of a linearized 2D Euler operator. Stud. Appl. Math. 112, 259–270 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Latushkin, Y., Vasudevan, S.: Stability criteria for the 2D \(\alpha \)-Euler equations. J. Math. Anal. Appl. 472(2), 1631–1659 (2019)

    MathSciNet  MATH  Google Scholar 

  24. Latushkin, Y., Vasudevan, S.: Eigenvalues of the linearized 2D Euler equations via Birman–Schwinger and Lin’s operators. J. Math. Fluid Mech. 20(4), 1667–1680 (2018)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  25. Li, Y.: On 2D Euler equations I On the energy-Casimir stabilities and the spectra for linearized 2D Euler equations. J. Math. Phys. 41, 728–758 (2000)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  26. Liu, X.L.: An example of instability for the Navier–Stokes equations on the 2-dimensional torus. Commun. Partial Differ. Equ. 17(11–12), 1995–2012 (1992)

    MathSciNet  MATH  Google Scholar 

  27. Liu, X.L.: Instability for the Navier–Stokes equations on the 2-dimensional torus and a lower bound for the Hausdorff dimension of their global attractors. Commun. Math. Phys. 147(2), 217–230 (1992)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  28. Lopes Filho, M., Lopes, H.N., Titi, E., Zang, A.: Approximation of 2D Euler equations by the second-grade fluid equations with Dirichlet boundary conditions. J. Math. Fluid Mech. 17, 327–340 (2015)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  29. Meshalkin, L.D., Sinai, I.G.: Investigation of the stability of a stationary solution of a system of equations for the plane movement of an incompressible viscous liquid. J. Appl. Math. Mech. 25, 1700–1705 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yudovich, V.I.: Example of the generation of a secondary stationary or periodic flow when there is loss of stability of the laminar flow of a viscous incompressible fluid. J. Appl. Math. Mech. 29(3), 527–544 (1965)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shibi Vasudevan.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Additional information

Communicated by R Shvydkoy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author is indebted to Professor Yuri Latushkin (University of Missouri-Columbia/Courant Institute of Mathematical Sciences) for several helpful discussions during the course of the preparation of this manuscript. The author also thanks Aleksei Seletskiy for making available the code from his forthcoming website and Yadugiri V. Tiruvaimozhi for help with the numerical illustrations. The author thanks the (anonymous) referees for their comments which improved the exposition of the paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasudevan, S. Instability of Unidirectional Flows for the 2D Navier–Stokes Equations and Related \(\alpha \)-Models. J. Math. Fluid Mech. 23, 35 (2021). https://doi.org/10.1007/s00021-021-00568-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-021-00568-0

Keywords

Navigation