Skip to main content
Log in

Ultrasonic-assisted biosynthesis of ZnO nanoparticles using Sonneratia alba leaf extract and investigation of its photocatalytic and biological activities

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The present study focuses on the synthesis of ZnO nanoparticles (ZnO NPs) using Sonneratia alba (S. alba) leaf extract (LE) in the aqueous medium. The as-synthesized nanoparticles were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), UV–Vis spectroscopy (UV–Visible), Scanning electron microscopy (SEM), Energy dispersive X-ray analysis (EDAX), Transmission electron microscopy (TEM), Dynamic light scattering (DLS), Zeta potential and N2adsorption-desorption isotherm. The XRD pattern verifies the formation of the crystalline wurtzite structure of ZnO NPs. Further, the bandgap of ZnO NPs was calculated using Tauc’s plot and observed to be 3.2 eV. SEM analysis reveals the formation of spherical shape ZnO NPs. The as-synthesized ZnO NPs show excellent photocatalytic activity against Ethidium bromide (EtBr) and Brilliant green (BG) dye. Kinetic study shows degradation efficiency towards EtBr (97.07%) and BG (95.01%) with rate constant of 0.018 min−1 (EtBr, R2 = 0.98472) and 0.033 min−1 (BG, R2 = 0.9813), respectively. Moreover, the synthesized material shows excellent antibacterial activity against gram-positive and negative bacteria with excellent antioxidant activity and anti-inflammatory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Jha and N. G. Shimpi (2018). Spherical nanosilver: Bio-inspired green synthesis, characterizations, and catalytic applications. Nano-Struct. Nano-Objects 16, 234–249.

    Article  CAS  Google Scholar 

  2. M. Jha, S. Ansari, and N. G. Shimpi (2019). Ultrasonic assisted green synthesis of Ag:CdO nanocubes and nanospheres using Citrus limon leaves for efficient degradation of organic dyes. J. Ind. Eng. Chem. 69, 269–284.

    Article  CAS  Google Scholar 

  3. A. P. Shah, S. Jain, V. J. Mokale, and N. G. Shimpi (2019). High performance visible light photocatalysis of electrospun PAN/ZnO hybrid nanofibers. J. Ind. Eng. Chem. 77, 154–163.

    Article  CAS  Google Scholar 

  4. G. Sharmila, M. Thirumarimurugan, and C. Muthukumaran (2019). Green synthesis of ZnO nanoparticles using Tecoma castanifolia leaf extract: characterization and evaluation of its antioxidant, bactericidal and anticancer activities. J. Microchem. 145, 578–587.

    Article  CAS  Google Scholar 

  5. C. Zhang, L. Liu, J. Wang, F. Rong, and Fu. Degang (2013). Electrochemical degradation of ethidium bromide using boron-doped diamond electrode. Sep. Purif. Technol. 107, 91–101.

    Article  CAS  Google Scholar 

  6. I. A. Dvortsov, N. A. Lunina, L. A. Hekanovskaya, E. N. Shedova, L. V. Gening, and G. A. Velikodvorskaya (2006). Ethidium bromide is good not only for staining of nucleic acids but also for staining of proteins after polyacrylamide gel soaking in trichloroacetic acid solution. Anal. Biochem. 2 (353), 293–295.

    Article  CAS  Google Scholar 

  7. L. George and E. B. Sansone (1987). Ethidium bromide: destruction and decontamination of solutions. Anal. Biochem. 162, 453–458.

    Article  Google Scholar 

  8. C. Zhang, L. Liu, J. Wang, F. Rong, and D. Fu (2013). Electrochemical degradation of ethidium bromide using boron-doped diamond electrode. Sep. Purif. Technol. 107, 91–101.

    Article  CAS  Google Scholar 

  9. C. Adán, A. Martínez-Arias, M. Fernández-García, and A. Bahamonde (2007). Photocatalytic degradation of ethidium bromide over titania in aqueous solutions. Appl. Catal. B Environ. 76, 395–402.

    Article  CAS  Google Scholar 

  10. J. Carbajo, C. Adán, A. Rey, A. Martínez-Arias, and A. Bahamonde (2011). Optimization of H2O2 use during the photocatalytic degradation of ethidium bromide with TiO2 and iron-doped TiO2 catalysts. Appl. Catal. B Environ. 102, 85–93.

    Article  CAS  Google Scholar 

  11. L. A. Shah, T. Malik, M. Siddiq, A. Haleem, M. Sayed, and A. Naeem (2019). TiO2 nanotubes doped poly(vinylidene fluoride) polymer membranes (PVDF/TNT) for efficient photocatalytic degradation of brilliant green dye. J. Environ. Chem. Eng. 7, 103291.

    Article  CAS  Google Scholar 

  12. A. Gnanaprakasam, V. M. Sivakumar, and M. Thirumarimurugan (2016). A study on Cu and Ag doped ZnO nanoparticles for the photocatalytic degradation of brilliant green dye: synthesis and characterization. Water Sci. Technol. 74, 1426–1435.

    Article  CAS  PubMed  Google Scholar 

  13. P. Sharma, H. Kaur, M. Sharma, and V. Sahore (2011). A review on applicability of naturally available adsorbents for the removal of hazardous dyes from aqueous waste. Environ. Monit. Assess. 183, 151–195.

    Article  CAS  PubMed  Google Scholar 

  14. F. Salimi, S. E. Sayed, and K. Changiz (2018). Removal of methylene blue from water solution by modified nano-boehmite with Bismuth. Inorg. Nano-Met. Chem. 48, 31–40.

    Article  CAS  Google Scholar 

  15. Q. I. Rahman, M. Ahmad, S. K. Misra, and M. Lohani (2013). Effective photocatalytic degradation of rhodamine B dye by ZnO nanoparticles. Mater. Lett. 91, 170–174.

    Article  CAS  Google Scholar 

  16. R. Saleh and N. F. Djaja (2014). UV light photocatalytic degradation of organic dyes with Fe-doped ZnO nanoparticles. Superlattices Microstruct. 74, 217–233.

    Article  CAS  Google Scholar 

  17. A. Al-Ghamdi, O. A. Al-Hartomy, M. E. L. Okr, A. M. Nawar, S. El-Gazzar, F. El-Tantawy, and F. Yakuphanoglu (2014). Semiconducting properties of Al doped ZnO thin films. Spectrochim. Acta A 131, 512–517.

    Article  CAS  Google Scholar 

  18. R. Saleh and N. F. Djaja (2014). Transition-metal-doped ZnO nanoparticles: synthesis, characterization and photocatalytic activity under UV light. Spectrochim. Acta A 130, 581–590.

    Article  CAS  Google Scholar 

  19. M. F. Arvanag, A. Bayrami, A. Habibi-Yangjeh, and S. R. Pouran (2019). A comprehensive study on antidiabetic and antibacterial activities of ZnO nanoparticles biosynthesized using Silybum marianum seed extract. Mater. Sci. Eng. C 97, 397–405.

    Article  CAS  Google Scholar 

  20. R. K. S. M. Ghasem, H. M. Masoud, A. Touran, Y. Sohelyaa, and S. Elham (2019). Green synthesis of zinc oxide nanoparticles and evaluation of anti-angiogenesis, anti-inflammatory and cytotoxicity properties. J. Biosci. 44, 30–39.

    Article  CAS  Google Scholar 

  21. S. Chakraborti, S. Saha, A. Manna, S. Banerjee, A. Adhikary, and A. Chakrabarti (2017). PEG-functionalized zinc oxide nanoparticles induce apoptosis in breast cancer cells through reactive oxygen species-dependent impairment of DNA damage repair enzyme NEIL2. Free Radic. Biol. Med. 103, 3547.

    Article  CAS  Google Scholar 

  22. S. Vijayakumar and B. Vaseeharan (2018). Antibiofilm, anti cancer and ecotoxicity properties of collagen based ZnO nanoparticles. Adv. Powder Technol. 29, 2331–2345.

    Article  CAS  Google Scholar 

  23. V. Rajendar, C. H. Shilpa, B. Rajitha, R. K. Venkateswara, M. C. Sekhar, B. P. Reddy, and S. H. Park (2016). Effect of TWEEN 80 on the morphology and antibacterial properties of ZnO nanoparticles. J. Mater. Sci. Mater. Electron. 28, 3272–3277.

    Article  CAS  Google Scholar 

  24. R. Dobrucka and J. Długaszewska (2016). Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi J. Biol. Sci. 23, 517–523.

    Article  CAS  PubMed  Google Scholar 

  25. P. C. Nagajyothi, S. Ju, I. Jun, T. V. M. Sreekanth, K. Joong, and H. Mook (2015). Biology antioxidant and anti-inflammatory activities of zinc oxide nanoparticles synthesized using Polygala tenuifolia root extract. J. Photochem. Photobiol. B 146, 10–17.

    Article  CAS  PubMed  Google Scholar 

  26. J. Fowsiya, G. Madhumitha, N. A. Al-dhabi, and M. Valan (2016). Biology photocatalytic degradation of Congo red using Carissa edulis extract capped zinc oxide nanoparticles. J. Photochem. Photobiol. B 162, 395–401.

    Article  CAS  PubMed  Google Scholar 

  27. N. A. Samat and R. Md Nor (2013). Sol-gel synthesis of zinc oxide nanoparticles using Citrus aurantifolia extracts. Ceram. Int. 39, 1–4.

    CAS  Google Scholar 

  28. P. Mishra, Y. P. Singh, H. P. Nagaswarupa, S. C. Sharma, Y. S. Vidya, S. C. Prashantha, H. Nagabhushana, K. S. Anantharaju, S. Sharma, and L. Renuka (2016). Caralluma fimbriata extract induced green synthesis, structural, optical and photocatalytic properties of ZnO nanostructure modified with Gd. J. Alloys Compd. 685, 656–669.

    Article  CAS  Google Scholar 

  29. J. Qu, X. Yuan, X. Wang, and P. Shao (2011). Zinc accumulation and synthesis of ZnO nanoparticles using Physalis alkekengi L. Environ. Pollut. 159, 1783–1788.

    Article  CAS  PubMed  Google Scholar 

  30. M. Sundrarajan, S. Ambika, and K. Bharathi (2015). Plant-extract mediated synthesis of ZnO nanoparticles using Pongamia pinnata and their activity against pathogenic bacteria. Adv. Powder Technol. 26 (5), 1294–1299.

    Article  CAS  Google Scholar 

  31. D. Wang, H. Liu, Y. Ma, J. Qu, J. Guan, N. Lu, L. Ying, and Y. Xing (2016). Recycling of hyper-accumulator: synthesis of ZnO nanoparticles and photocatalytic degradation for dichlorophenol. J. Alloys Compd. 680, 500–505.

    Article  CAS  Google Scholar 

  32. P. Rajiv, S. Rajeshwari, and R. Venckatesh (2013). Bio-fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens. Spectrochim. Acta A Mol. Biomol. Spectrosc. 112, 384–387.

    Article  CAS  PubMed  Google Scholar 

  33. Y. Zheng, L. Fu, F. Han, A. Wang, W. Cai, J. Yu, J. Yang, and F. Peng (2015). Green biosynthesis and characterization of zinc oxide nanoparticles using Corymbia citriodora leaf extract and their photocatalytic activity. Green Chem. Lett. Rev. 8, 59–63.

    Article  CAS  Google Scholar 

  34. V. Kathiravan, S. Ravi, S. Ashokkumar, S. Velmurugan, K. Elumalai, C. Prasad, et al. (2015). Green synthesis of silver nanoparticles using Croton sparsiflorus morong leaf extract and their antibacterial and antifungal activities. Spectrochim. Acta A Mol. Biomol. Spectrosc. 139, 200–205.

    Article  CAS  PubMed  Google Scholar 

  35. G. Sangeetha, S. Rajeshwari, and R. Venckatesh (2011). Green synthesis of zinc oxide nanoparticles by Aloe barbadensis miller leaf extract: structure and optical properties. Mater. Res. Bull. 46, 2560–2566.

    Article  CAS  Google Scholar 

  36. K. Elumalai and S. Velmurugan (2015). Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.). Appl. Surf. Sci. 345, 329–336.

    Article  CAS  Google Scholar 

  37. S. Ambika and M. Sundrarajan (2015). Biology antibacterial behaviour of Vitex negundo extract assisted ZnO nanoparticles against pathogenic bacteria. J. Photochem. Photobiol. B 146, 52–57.

    Article  CAS  PubMed  Google Scholar 

  38. A. Sangeetha, U. Saraswathi, and J. Singaravelu (2014). Green synthesis of silver nanoparticles using a mangrove Excoecaria agallocha. Int. J. Pharm. Sci. Invent. 3, 54–57.

    Google Scholar 

  39. M. S. Khan, P. P. Dhavan, B. L. Jadhav, and N. G. Shimpi (2020). Ultrasound-assisted green synthesis of ag-decorated ZnO nanoparticles using excoecaria agallocha leaf extract and evaluation of their photocatalytic and biological activity. Chem. Select 5, 12660–12671.

    CAS  Google Scholar 

  40. S. Balakrishnan, M. Srinivasan, and J. Mohanraj (2016). Biosynthesis of silver nanoparticles from mangrove plant (Avicennia marina) extract and their potential mosquito larvicidal property. J. Parasit. Dis. 40, 991–996.

    Article  PubMed  Google Scholar 

  41. J. Umashankari, D. Inbakandan, T. Ajithkumar, and T. Balasubramanian (2012). Mangrove plant Rhizophora mucronata (Lamk, 1804) mediated one pot green synthesis of silver nanoparticles and its antibacterial activity against aquatic pathogens. Aquat. Biosyst. 8, 11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. M. Gnanadesigan, M. Anand, S. Ravikumar, M. Maruthupandy, A. Syed, M. Vijayakumar, and A. Kumaraguru (2012). Antibacterial potential of biosynthesised silver nanoparticles using Avicennia marina mangrove plant. Appl. Nanosci. 2, 143–147.

    Article  CAS  Google Scholar 

  43. P. Vijaya, M. S. Ali, R. S. Saranya, N. Yogananth, V. Anuratha, and P. P. Khalitha (2013). Antimicrobial activity and characterization of biosynthesized silver nanoparticles from Anisochilus carnosus. Int. J. Nano Dimens. 3, 255–262.

    CAS  Google Scholar 

  44. M. Gnanadesigan, M. Anand, S. Ravikumar, M. Maruthupandy, V. Vijayakumar, S. Selvam, M. Dhineshkumar, and A. Kumaraguru (2011). Biosynthesis of silver nanoparticles by using mangrove plant extract and their potential mosquito larvicidal property. Asian Pac. J. Trop. Med. 4, 799–803.

    Article  CAS  PubMed  Google Scholar 

  45. R. Vijayaraj, G. Dinesh Kumar, and N. S. Kumaran (2018). In vitro anti-inflammatory activity of silver nanoparticle synthesized Avicennia marina (Forssk.) Vierh.: A green synthetic approach. Int. J. Green Pharm. 12, 528–536.

    Google Scholar 

  46. H. Joshi and M. Ghose (2003). Forest structure and species distribution along soil salinity and pH gradient in mangrove swamps of the Sundarbans. Trop. Ecol. 44, 197–206.

    Google Scholar 

  47. R. C. Patil, S. M. Manohar, V. I. Katchi, A. J. Rao, and A. Moghe (2012). Ethanolic stem extract of Excoecaria agallocha induces G1 arrest or apoptosis in human lung cancer cells depending on their P53 Status. Taiwania 57, 89–98.

    Google Scholar 

  48. M. Arumugam, U. R. Pawar, M. Gomathinayagam, G. M. Lakshmanan, and R. Panneerselvam (2012). Antibacterial and antioxidant activity between micropropagated and field grown plants of Excoecaria agallocha L. Int. Res. J. Pharm. 3, 235.

    CAS  Google Scholar 

  49. K. Dashtian, S. Mosleh, M. Amiri, M. Ghaedi, and R. Jannesar (2019). Bi2WO6/Ag3PO4-Ag Z-scheme heterojunction as new plasmonic visible-light-driven photocatalyst: performance evaluation and mechanism study. New J. Chem. 43, 1275–1284.

    Article  Google Scholar 

  50. A. M. Umabala, P. Suresh, and A. V. Prasada Rao (2016). Effective visible light photocatalytic degradation of Brilliant green using H2O2 sensitized BiVO4. Der Pharma Chem. 8 (1), 61–66.

    CAS  Google Scholar 

  51. V. L. Gole, A. Priya, and S. P. Danao (2017). Decolorization of brilliant green dye using immersed lamp sonophotocatalytic reactor. Appl. Water Sci. 7 (8), 4237–4245.

    Article  CAS  Google Scholar 

  52. D. Bhattacharya, D. Ghoshal, D. Mondal, B. K. Paul, N. Bose, S. Das, and M. Basu (2019). Visible light driven degradation of brilliant green dye using titanium based ternary metal oxide photocatalyst. Results Phys. 12, 1850–1858. https://doi.org/10.1016/j.rinp.2019.01.065.

    Article  Google Scholar 

  53. P. Taneja, S. Sharma, A. Umar, S. K. Mehta, A. O. Ibhadon, and S. K. Kansal (2018). Visible-light driven photocatalytic degradation of brilliant green dye based on cobalt tungstate (CoWO4) nanoparticles. Mater. Chem. Phys. 211, 335–342.

    Article  CAS  Google Scholar 

  54. R. Nithya, S. Ragupathy, D. Sakthi, V. Arun, and N. Kannadasan (2020). A study on Mn doped ZnO loaded on CSAC for the photocatalytic degradation of brilliant green dye. Chem. Phys. Lett. 755, 137769.

    Article  CAS  Google Scholar 

  55. M. I. Din, A. Rani, Z. Hussain, R. Khalid, A. Aihetasham, and M. Mukhtar (2019). Biofabrication of size-controlled ZnO nanoparticles using various capping agents and their cytotoxic and antitermite activity. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2019.1672671.

    Article  Google Scholar 

  56. N. Thirugnanam, H. Song, and Y. Wu (2017). Photocatalytic degradation of Brilliant Green dye using CdSe quantum dots hybridized with graphene oxide under sunlight irradiation. Chin. J. Catal. 38 (12), 2150–2159.

    Article  CAS  Google Scholar 

  57. A. B. Lavand and S. M. Yuvraj (2016). Visible-light photocatalytic degradation of ethidium bromide using carbon- and iron-modified TiO2 photocatalyst. J. Therm. Anal. Calorim. 123, 1163–1172.

    Article  CAS  Google Scholar 

  58. H. G. A. El-Ella, A. Youssef, H. Ghannam, A. Zedan, W. Aboulthana, and A. Al-Sherbini (2020). Synthesis of high efficient CS/PVDC/TiO2-Au nanocomposite for photocatalytic degradation of carcinogenic ethidium bromide in sunlight. Egypt J Chem. 63 (5), 1619–1638.

    Google Scholar 

  59. A. K. Singh, P. Pal, V. Gupta, T. P. Yadav, V. Gupta, and S. P. Singh (2018). Green synthesis characterization and antimicrobial activity of zinc oxide quantum dots using Eclipta alba. Mater. Chem. Phys. 203, 40–48.

    Article  CAS  Google Scholar 

  60. J. C. Palomino, A. Martin, M. Camacho, H. Guerra, J. Swings, and F. Portaels (2002). Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 46, 2720–2720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. M. S. Kasare, P. P. Dhavan, V. Jadhav, and S. D. Pawar (2019). In-vitro antibacterial activity of Ni(II), Cu(II), and Zn(II) complexes incorporating new azo-azomethine ligand possessing excellent antioxidant, anti-inflammatory activity and protective effect of free radicals against plasmid DNA. Synth. Commun. 49, 1–13.

    Article  CAS  Google Scholar 

  62. P. Arulpriya, P. Lalitha, and S. Hemalatha (2010). In-vitro antioxidant testing of the extracts of Samanea saman (Jacq) Merr. Der Chem. Sinica 1, 3–79.

    Google Scholar 

  63. J. Sakat and R. A. Gambhire (2010). In vitro antioxidant and anti-inflammatory activity of methanol extract of Oxalis corniculata Linn. Int. J. Pharm. Pharm. Sci. 2, 146–155.

    Google Scholar 

  64. R. N. Al and K. S. Al-Haidari (2016). Environmental friendly synthesis of silver nanoparticles using leaf extract of Mureira Tree (Azadirachta indica) cultivated in Iraq and efcacy the antimicrobial activity. J. Nat. Sci. Res. 6 (4), 2224–3186.

    Google Scholar 

  65. P. P. Dhavan and B. L. Jadhav (2020). Eco-friendly approach to control dengue vector Aedes aegypti larvae with their enzyme modulation by Lumnitzera racemosa fabricated zinc oxide nanorods. SN Appl. Sci. 2 (5), 1–15.

    Article  CAS  Google Scholar 

  66. P. N. V. K. Pallela, L. K. Ruddaraju, S. C. Veerla, R. Matangi, P. Kollu, S. Ummey, and S. V. N. Pammi (2020). Synergetic antibacterial potential, dye degrading capability and biocompatibility of Asperagus racemosus root assisted ZnO nanoparticles. Mater. Today Commun. 25, 101574.

    Article  CAS  Google Scholar 

  67. M. Ree, E. Mohamed, M. Ali, E. Gomaa, and M. Mohsen (2020). Green ZnO nanorod material for dye degradation and detoxification of pharmaceutical wastes in water. J. Environ. Chem. Eng. 8, 104295.

    Article  CAS  Google Scholar 

  68. M. Suresh and A. Sivasamy (2020). Fabrication of graphene nanosheets decorated by nitrogen-doped ZnO nanoparticles with enhanced visible photocatalytic activity for the degradation of Methylene Blue dye. J. Mol. Liq. 317, 114112.

    Article  CAS  Google Scholar 

  69. D. Rania, A. Rabah, T. Mamadou, M. Christine, and K. Andrei (2019). Antibacterial activity of ZnO and CuO nanoparticles against gram positive and gram negative strains. Mater. Sci. Eng. C 104, 109968.

    Article  CAS  Google Scholar 

  70. G. Re, D. Hu, E. E. W. Cheng, M. A. Vargas-Reus, P. Reip, and R. P. Allaker (2009). Characterisation of copper oxide nanoparticles for antimicrobial applications. Int. J. Antimicrob. Agents 33, 587–590.

    Article  CAS  Google Scholar 

  71. J. Sawai (2003). Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J. Microbiol. Methods 54, 177–182.

    Article  CAS  PubMed  Google Scholar 

  72. S. Nair, A. Sasidharan, V. V. D. Rani, D. Menon, S. Nair, K. Manzoor, and S. Raina (2009). Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. J. Mater. Sci. Mater. Med. 20, 235–241.

    Article  CAS  Google Scholar 

  73. W. Song, J. Zhang, J. Guo, J. Zhang, F. Ding, L. Li, and Z. Sun (2010). Role of the dissolved zinc ion and reactive oxygen spices in cytotoxicity of ZnO nanoparticles. Toxicol. Lett. 199, 389–397.

    Article  CAS  PubMed  Google Scholar 

  74. M. Li, L. Zhu, and D. Lin (2011). Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environ. Sci. Technol. 45, 1977–1983.

    Article  CAS  PubMed  Google Scholar 

  75. S. Vijayakumar, P. Arulmozhi, N. Kumar, B. Sakthivel, S. P. Kumar, and P. K. Praseetha (2020). Acalypha fruticosa L. leaf extract mediated synthesis of ZnO nanoparticles: Characterization and antimicrobial activities. Mater. Today 23, 73–80.

    CAS  Google Scholar 

  76. C. Mahendra, M. Murali, G. Manasa, P. Ponnamma, M. R. Abhilash, T. R. Lakshmeesha, A. Satish, K. N. Amruthesh, and M. S. Sudarshana (2017). Antibacterial and antimitotic potential of bio-fabricated zinc oxide nanoparticles of Cochlospermum religiosum (L.). Microb. Pathogen 110, 620–629.

    Article  CAS  Google Scholar 

  77. S. Vijayakumar, S. Mahadevan, P. Arulmozhi, S. Sriram, and P. K. Praseetha (2018). Green synthesis of zinc oxide nanoparticles using Atalantia monophylla leaf extracts: characterization and antimicrobial analysis. Mater. Sci. Semicond. Proc. 82, 39–45.

    Article  CAS  Google Scholar 

  78. A. E. Edris (2007). Pharmaceutical and therapeutic potentials of essential oils and their 686 individual volatile constituents: a review. Photother. Res. 4, 308–323.

    Article  CAS  Google Scholar 

  79. S. Bhakya, S. Muthukrishnan, M. Sukumaran, and M. Muthukumar (2015). Biogenic synthesis of silver nanoparticles and their antioxidant and antibacterial activity. Appl. Nanosci. 10, 1–12.

    Google Scholar 

  80. E. S. Contreras-Guzman and F. C. Strong (1982). Determination of tocopherols (Vitamin E) by reduction of cupricion. J. AOAC Int. 65, 1215–1226.

    Article  CAS  Google Scholar 

  81. D. Huang, B. Ou, and R. Prior (2005). The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 53, 1841–1856.

    Article  CAS  PubMed  Google Scholar 

  82. P. Thatoi, R. G. Kerry, S. Gouda, G. Das, K. Pramanik, H. Thatoi, and J. K. Patra (2016). Photo-mediated green synthesis of silver and zinc oxide nanoparticles using aqueous extracts of two mangrove plant species, Heritiera fomes and Sonneratia apetala and investigation of their biomedical applications. J. Photochem. Photobiol. B 163, 311–318.

    Article  CAS  PubMed  Google Scholar 

  83. S. S. Ali, R. Morsy, N. A. El-Zawawy, M. F. Fareed, and M. Y. Bedaiwy (2017). Synthesized zinc peroxide nanoparticles (ZnO2-NPs): a novel antimicrobial, anti-elastase, anti-keratinase, and anti-inflammatory approach toward polymicrobial burn wounds. Int. J. Nanomed. 12, 6059–6073.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The authors are thankful to UGC, New Delhi (UGC/ MRP/43-157/2014(SR) and DRDO, New Delhi (ERIP/ER/ 1503214/M/01/1745) for providing financial assistance to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navinchandra G. Shimpi.

Ethics declarations

Conflict of interest

The authors declares that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Information 1 (DOCX 2579 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.S., Dhavan, P.P., Ratna, D. et al. Ultrasonic-assisted biosynthesis of ZnO nanoparticles using Sonneratia alba leaf extract and investigation of its photocatalytic and biological activities. J Clust Sci 33, 1007–1023 (2022). https://doi.org/10.1007/s10876-021-02036-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02036-1

Keywords

Navigation