Skip to main content
Log in

Modeling and Multi-objective Optimization Method of Machine Tool Energy Consumption Considering Tool Wear

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

The natural energy crisis and the increasingly serious environmental problems have imposed all industries to reduce energy consumption. During milling process, selecting a correct cutting parameters can not only greatly improve production quality and processing efficiency, but also can reduce energy consumption, in addition, tool wear also has a great impact on them. Therefore, a milling power consumption model of CNC machine tools is established based on modern machining theory is established in this article, unlike traditional energy consumption models, our model takes full account of cutting conditions and tool wear. The surface roughness of parts is one of the important indicators to measure the machining quality of machine tools. Therefore, taking milling process as research object, a multi-objective cutting parameters optimization model that takes the machining surface roughness, material removal rate (MRR) and machining energy consumption as the optimization goals was established. Furthermore, an intelligent optimization algorithm was proposed based on improved Teaching–Learning-Based Optimization (TLBO) to solve the model under various limited milling conditions. Finally, comparing experimental results of optimized parameter and empirical parameters, it shows that goals of reducing energy consumption, improving productivity and machining quality can be achieved by optimizing cutting parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Department of Energy Statistics, National Bureau of Statistics. (2018). China energy statistical yearbook 2018. Beijing: China Statistics Press.

    Google Scholar 

  2. Park, C. W., Kwon, K. S., Kim, W. B., et al. (2009). Energy consumption reduction technology in manufacturing—a selective review of policies, standards, and research. International Journal of Precision Engineering and Manufacturing, 10(5), 151–173.

    Article  Google Scholar 

  3. Duflou, J. R., Sutherland, J. W., Dornfeld, D., et al. (2012). Towards energy and resource efficient manufacturing: A processes and systems approach. CIRP Annals-Manufacturing Technology, 61(2), 587–609.

    Article  Google Scholar 

  4. Liu, F., Xie, J., & Liu, S. (2015). A method for predicting the energy consumption of the main driving system of a machine tool in a machining process. Journal of Cleaner Production, 105, 171–177.

    Article  Google Scholar 

  5. Ding, H., Guo, D., Cheng, K., & Cui, Q. (2014). An investigation on quantitative analysis of energy consumption and carbon footprint in the grinding process. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 228(6), 950–956.

    Article  Google Scholar 

  6. Katchasuwanmanee, K., Bateman, R., & Cheng, K. (2015). Development of the energy-smart production management system (e-ProMan): A big data driven approach, analysis and optimisation. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 230(5), 1937–1945.

    Google Scholar 

  7. Katchasuwanmanee, K., Cheng, K., & Bateman, R. (2016). Simulation based energy-resource efficient manufacturing integrated with in-process virtual management. Chinese Journal of Mechanical Engineering, 29, 1083–1089.

    Article  Google Scholar 

  8. Liu, N., Zhang, Y. F., & Lu, W. F. (2015). A hybrid approach to energy consumption modelling based on cutting power: A milling case. Journal of Cleaner Production, 104, 264–272.

    Article  Google Scholar 

  9. Liu, P. J., Liu, F., & Qiu, H. (2017). A novel approach for acquiring the real-time energy efficiency of machine tools. Energy, 121, 524–532.

    Article  Google Scholar 

  10. Bilga, P. S., Singh, S., & Kumar, R. (2016). Optimization of energy consumption response parameters for turning operation using Taguchi method. Journal of Cleaner Production, 137, 1406–1417.

    Article  Google Scholar 

  11. Meng, Y., Wang, L. H., Lee, C. H., Ji, W., & Liu, X. L. (2018). Plastic deformation-based energy consumption modelling for machining. International journal of advanced manufacturing technology, 96, 631–641.

    Article  Google Scholar 

  12. Liu, Z. Y., Guo, Y. B., Sealy, M. P., & Liu, Z. Q. (2016). Energy consumption and process sustainability of hard milling with tool wear progression. Journal of Materials Processing Technology, 229, 305–312.

    Article  Google Scholar 

  13. Garg, A., Jasmine, S. L. L., & Gao, L. (2016). Power consumption and tool life models for the production process. Journal of Cleaner Production, 131, 754–764.

    Article  Google Scholar 

  14. Hu, L. K., Liu, Y., Peng, C., Tang, W. C. J., Tang, R. Z., & Tiwari, A. (2018). Minimising the energy consumption of tool change and tool path of machining by sequencing the features. Energy, 147, 390–402.

    Article  Google Scholar 

  15. Liu, Z. Y., Sealy, M. P., Li, W., et al. (2018). Energy consumption characteristics in finish hard milling. Journal of Manufacturing Processes, 35, 500–507.

    Article  Google Scholar 

  16. Wang, Q., Zhang, D. H., Tang, K., & Zhang, Y. (2019). A mechanics based prediction model for tool wear and power consumption in drilling operations and its applications. Journal of Cleaner Production, 234, 171–184.

    Article  Google Scholar 

  17. Arriaza, O. V., Kim, D. W., Lee, D. Y., & Suhaimi, M. A. (2017). Trade-off analysis between machining time and energy consumption in impeller NC machining. Robotics and Computer-Integrated Manufacturing, 43, 164–170.

    Article  Google Scholar 

  18. Jiang, Z. P., Gao, D., Lu, Y., & Liu, X. L. (2019). Optimization of cutting parameters for trade-off among carbon emissions, surface roughness, and processing time. Chinese Journal of Mechanical Engineering, 32, 94.

    Article  Google Scholar 

  19. Zhou, L. R., Li, J. F., Li, F. Y., Mendis, G., & Sutherland, J. W. (2018). Optimization parameters for energy efficiency in end milling. Procedia CIRP, 69, 312–317.

    Article  Google Scholar 

  20. Li, C. B., Xiao, Q. G., Tang, Y., & Li, L. (2016). A method integrating Taguchi, RSM and MOPSO to CNC machining parameters optimization for energy saving. Journal of Cleaner Production, 135, 263–275.

    Article  Google Scholar 

  21. Zhang, Z. W., Tang, R. Z., Peng, T., Tao, L. Y., & Jia, S. (2016). A method for minimizing the energy consumption of machining system: integration of process planning and scheduling. Journal of Cleaner Production, 137, 1647–1662.

    Article  Google Scholar 

  22. Li, L. L., Li, C. B., Tang, Y., & Li, L. (2017). An integrated approach of process planning and cutting parameter optimization for energy-aware CNC machining. Journal of Cleaner Production, 162, 458–473.

    Article  Google Scholar 

  23. Chen, X. Z., Li, C. B., Tang, Y. L., Li Du, Y. B., & Li, L. L. (2019). Integrated optimization of cutting tool and cutting parameters in face milling for minimizing energy footprint and production time. Energy, 175, 1021–1037.

    Article  Google Scholar 

  24. Wang, Y. C., Kim, D. W., Katayama, H., & Hsueh, W. C. (2018). Optimization of machining economics and energy consumption in face milling operations. International Journal of Advanced Manufacturing Technology, 99, 2093–2100.

    Article  Google Scholar 

  25. Wang, Q. L., Liu, F., & Wang, X. L. (2014). Multi-objective optimization of machining parameters considering energy consumption. International Journal of Advanced Manufacturing Technology, 71, 1133–1142.

    Article  Google Scholar 

  26. Hu, L. K., Tang, R. Z., Liu, Y., Cao, Y. L., & Tiwari, A. (2018). Optimising the machining time, deviation and energy consumption through a multi-objective feature sequencing approach. Energy Conversion and Management, 160, 126–140.

    Article  Google Scholar 

  27. Park, H. S., Nguyen, T. T., & Dang, X. P. (2016). Multi-objective optimization of turning process of hardened material for energy efficiency. International Journal of Precision Engineering and Manufacturing-Green Technology, 17(12), 1623–1631.

    Article  Google Scholar 

  28. Newman, S. T., Nassehi, A., Imani-Asrai, R., & Dhokia, V. (2012). Energy efficient process planning for CNC machining. Cirp Journal of Manufacturing Science and Technology, 5(2), 127–136.

    Article  Google Scholar 

  29. Chen, B., Li, S., Deng, Z., Guo, B., & Zhao, Q. (2017). Grinding marks on ultra-precision grinding spherical and aspheric surfaces. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(4), 419–429.

    Article  Google Scholar 

  30. Yan, G., You, K., & Fang, F. (2020). Three-linear-axis grinding of small aperture aspheric surfaces. International Journal of Precision Engineering and Manufacturing-Green Technology, 7, 997–1008.

    Article  Google Scholar 

  31. He, K. Y., Tang, R. Z., & Jin, M. Z. (2017). Pareto fronts of machining parameters for trade-off among energy consumption, cutting force and processing time. International Journal of Production Economics, 185, 113–127.

    Article  Google Scholar 

  32. Budak, E., Altintas, Y., & Armarego, E. J. A. (1996). Prediction of milling force coefficients from orthogonal cutting data. Journal of Manufacturing Science and Engineering-Transactions of the ASME, 118, 216–224.

    Article  Google Scholar 

  33. Lee, P., & Altintas, Y. (1996). Prediction of ball-end milling forces from orthogonal cutting data. International Journal of Machine Tools & Manufacture, 36, 1059–1072.

    Article  Google Scholar 

  34. Altintas, Y., & Yellowley, I. (1989). In-process detection of tool failure in milling using cutting force models. Transaction of ASME, Journal of Engineering for Industry, 111, 149–157.

    Article  Google Scholar 

  35. Waldert, D. J., Kapoor, S. G., & Devor, R. E. (1992). Automatic recognition of tool wear on a face mill using a mechanistic modeling approach. Wear, 157, 305–323.

    Article  Google Scholar 

  36. Hu, S., Liu, F., He, Y., & Hu, T. (2012). An on-line approach for energy efficiency monitoring of machine tools. Journal of Cleaner Production, 27, 133–140.

    Article  Google Scholar 

  37. Li, L., Yan, J., & Xing, Z. (2013). Energy requirements evaluation of milling machines based on thermal equilibrium and empirical modelling. Journal of Cleaner Production, 52, 113–121.

    Article  Google Scholar 

  38. Mativenga, P. T., & Rajemi, M. F. (2011). Calculation of optimum cutting parameters based on minimum energy footprint. Cirp Annals-Manufacturing Technology, 60(1), 149–152.

    Article  Google Scholar 

  39. Ma, F., Zhang, H., Cao, H., & Hon, K. K. B. (2017). An energy consumption optimization strategy for CNC milling. International Journal of Advanced Manufacturing Technology, 90(5–8), 1715–1726.

    Article  Google Scholar 

  40. Hu, S., Liu, F., He, Y., & Peng, B. (2010). Characteristics of additional load losses of spindle system of machine tools. Journal of Advanced Mechanical Design Systems and Manufacturing, 4(7), 1221–1233.

    Article  Google Scholar 

  41. Liu, F., Xu, Z. J., & Dan, B. (1995). Energy characteristics of machining systems and its application (in Chinese). Beijing: Machine Press.

    Google Scholar 

  42. Gutowski, T., Dahmus, J., & Thiriez, A. (2006). Electrical energy requirements for manufacturing processes. In: Proceedings of 13th CIRP International Conference on Life Cycle Engineering, Leuven, Belgium, pp. 5–11.

  43. Li, W., & Kara, S. (2011). An empirical model for predicting energy consumption of manufacturing processes: A case of turning process. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture., 225(9), 1636–1646.

    Article  Google Scholar 

  44. Campatelli, G., Lorenzini, L., & Scippa, A. (2014). Optimization of process parameters using a response surface method for minimizing power consumption in the milling of carbon steel. Journal of Cleaner Production, 66, 309–316.

    Article  Google Scholar 

  45. Gutowski, T., Murphy, C., Allen, D., et al. (2005). Environmentally benign manufacturing: Observations from Japan, Europe and the United States. Journal of Cleaner Production, 13, 1–17.

    Article  Google Scholar 

  46. Li, J. G., Lu, Y., Zhao, H., Li, P., & Yao, Y. X. (2014). Optimization of cutting parameters for energy saving. International Journal of Advanced Manufacturing Technology, 70, 117–124.

    Article  Google Scholar 

  47. Rao, R. V., & Kalyankar, V. D. (2013). Parameter optimization of modern machining processes using teaching-learning-based optimization algorithm. Engineering Applications of Artificial Intelligence, 26(1), 524–531.

    Article  Google Scholar 

  48. Tizhoosh, H.R. (2005). Opposition-Based Learning: A New Scheme for Machine Intelligence. CIMCA-IAWTIC’06. Vienna, 695–701.

  49. Roy, P. K., & Mandal, D. (2012). Quasi-oppositional biogeography-based optimization for multi-objective optimal power flow. Electric power components and systems, 40(2), 236–256.

    Article  Google Scholar 

  50. Yan, J. H., & Li, L. (2013). Multi-objective optimization of milling parameters-the trade-offs between energy, production rate and cutting quality. Journal of Cleaner Production, 52, 462–471.

    Article  Google Scholar 

  51. An, L. B., Feng, L. J., & Lu, C. G. (2011). Cutting parameter optimization for multi-pass milling operations by genetic algorithms. Advanced Materials Research, 160–162, 1738–1743.

    Google Scholar 

  52. Kant, G., & Sangwan, K. S. (2014). Prediction and optimization of machining parameters for minimizing power consumption and surface roughness in machining. Journal of Cleaner Production, 83, 151–164.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xitian Tian.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Tian, X. & Zhang, M. Modeling and Multi-objective Optimization Method of Machine Tool Energy Consumption Considering Tool Wear. Int. J. of Precis. Eng. and Manuf.-Green Tech. 9, 127–141 (2022). https://doi.org/10.1007/s40684-021-00320-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-021-00320-z

Keywords

Navigation