Skip to main content
Log in

Frequency Up-Conversion Hybrid Energy Harvester Combining Piezoelectric and Electromagnetic Transduction Mechanisms

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

A hybrid energy harvester with frequency up-conversion structures is proposed. The harvester achieves a high power output by utilizing both piezoelectric and electromagnetic transduction mechanisms. The harvester comprises a flexible substrate and two (internal and external) cantilevers. The internal and external cantilevers used for piezoelectric and electromagnetic conversion, respectively, are arranged such that the piezoelectric internal cantilever can vibrate with a large displacement to produce high output power. We use a frequency up-conversion method to convert the bending of the harvester into the vibration of the structure so that the harvester can generate energy even from the mechanical motion with an extremely low frequency. Two harvester configurations are investigated to validate the effect of the relative positions of the coil and magnet on the output voltage of the harvester. The maximum power output of the hybrid harvester is 7.38 mW, with outputs of 1.35 and 6.03 mW for piezoelectric and electromagnetic conversion, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hu, J., Luo, J., Zheng, Y., & Li, K. (2019). Graphene-grid deployment in energy harvesting cooperative wireless sensor networks for green IoT. IEEE Transactions on Industrial Informatics, 15(3), 1820–1829.

    Article  Google Scholar 

  2. Ahmad, I., Rehman, M. M. R., Khan, M., Abbas, A., Ishfaq, S., & Malik, S. (2019). Flow-based electromagnetic‐type energy harvester using microplanar coil for IoT sensors application. International Journal of Energy Research, 43(10), 5384–5391.

    Article  Google Scholar 

  3. Shirvanimoghaddam, M., Shirvanimoghaddam, K., Abolhasani, M. M., Farhangi, M., Barsari, V. Z., Liu, H., et al. (2019). Towards a green and self-powered Internet of Things using piezoelectric energy harvesting. IEEE Access : Practical Innovations, Open Solutions, 7, 94533–94556.

    Article  Google Scholar 

  4. Jella, V., Ippili, S., Eom, J.-H., Kim, Y.-J., Kim, H.-J., & Yoon, S.-G. (2017). A novel approach to ambient energy (thermoelectric, piezoelectric and solar-TPS) harvesting: Realization of a single structured TPS-fusion energy device using MAPbI3. Nano Energy, 52, 11–21.

    Article  Google Scholar 

  5. Orrego, S., Shoele, K., Ruas, A., Doran, K., Caggiano, B., Mittal, R., et al. (2017). Harvesting ambient wind energy with an inverted piezoelectric flag. Applied Energy, 194, 212–222.

    Article  Google Scholar 

  6. Sultana, A., Alam, M. M., Middya, T. R., & Mandal, D. (2018). A pyroelectric generator as a self-powered temperature sensor for sustainable thermal energy harvesting from waste heat and human body heat. Applied Energy, 221, 299–307.

    Article  Google Scholar 

  7. Xu, L., Jiang, T., Lin, P., Shao, J. J., He, C., Zhong, W., et al. (2018). Coupled triboelectric nanogenerator networks for efficient water wave energy harvesting. ACS Nano, 12(2), 1849–1858.

    Article  Google Scholar 

  8. Khalid, S., Raouf, I., Khan, A., Kim, N., & Kim, H. S. (2019). A review of human-powered energy harvesting for smart electronics: recent progress and challenges. International Journal of Precision Engineering and Manufacturing-Green Technology, 6, 821–851.

    Article  Google Scholar 

  9. Murotani, K., & Suzuki, Y. (2018). MEMS electret energy harvester with embedded bistable electrostatic spring for broadband response. Journal of Micromechanics and Microengineering, 28(10), 104001. (11 pp).

    Article  Google Scholar 

  10. Zhao, L., & Yang, Y. (2018). An impact-based broadband aeroelastic energy harvester for concurrent wind and base vibration energy harvesting. Applied Energy, 212, 233–243.

    Article  Google Scholar 

  11. Tsukamoto, T., Umino, Y., Shiomi, S., Yamada, K., & Suzuki, T. (2018). Bimorph piezoelectric vibration energy harvester with flexible 3D meshed-core structure for low frequency vibration. Science and Technology of Advanced Materials, 19, 660–668.

    Article  Google Scholar 

  12. Halim, M. A., Rantz, R., Zhang, Q., Gu, L., Yang, K., & Roundy, S. (2018). An electromagnetic rotational energy harvester using sprung eccentric rotor, driven by pseudo-walking motion. Applied Energy, 217, 66–74.

    Article  Google Scholar 

  13. Aldawood, G., Nguyen, H. T., & Bardaweel, H. (2019). High power density spring-assisted nonlinear electromagnetic vibration energy harvester for low base-accelerations. Applied Energy, 253, 113546. 14 pp.

    Article  Google Scholar 

  14. Pyo, S., Kim, M.-O., Kwon, D.-S., Kim, W., Yang, J.-H., Cho, H. S., et al. (2020). All-textile wearable tirboelectric nanogenerator using pile-embroidered fibers for enhancing output power. Smart Materials and Structures, 29(5), 055026. (9 pp).

    Article  Google Scholar 

  15. Su, M., Brugger, J., & Kim, B. (2020). Simply structured wearable triboelectric nanogenerator based on a hybrid composition of carbon nanotubes and polymer layer. International Journal of Precision Engineering and Manufacturing-Green Technology, 7, 683–698.

    Article  Google Scholar 

  16. Shu, Y. C., & Lien, I. C. (2006). Efficiency of energy conversion for a piezoelectric power harvesting system. Journal of Micromechanics and Microengineering, 16(11), 2429–2438.

    Article  Google Scholar 

  17. Nguyen, V., & Yang, R. (2013). Effect of humidity and pressure on the triboelectric nanogenerator. Nano Energy, 2(5), 604–608.

    Article  Google Scholar 

  18. Park, J.-H., Lim, T.-W., Kim, S.-D., & Park, S.-H. (2016). Design and experimental verification of flexible plate-type piezoelectric vibrator for energy harvesting system. International Journal of Precision Engineering and Manufacturing-Green Technology, 3, 253–259.

    Article  Google Scholar 

  19. Sun, X., Wang, F., & Xu, J. (2019). Nonlinear piezoelectric structure for ultralow-frequency band vibration energy harvesting with magnetic interaction. International Journal of Precision Engineering and Manufacturing-Green Technology, 3, 253–259.

    Google Scholar 

  20. Kim, S.-W., Lee, T.-G., Kim, D.-H., Lee, K.-T., Jung, I., Kang, C.-Y., et al. (2019). Determination of the appropriate piezoelectric materials for various types of piezoelectric energy harvesters with high output power. Nano Energy, 57, 581–591.

    Article  Google Scholar 

  21. Roundy, S., Wright, P. K., & Rabaey, J. (2003). A study of low level vibrations as a power source for wireless sensor nodes. Computer Communications, 26(11), 1131–1144.

    Article  Google Scholar 

  22. Kulah, H., & Najafi, K. (2008). Energy scavenging from low-frequency vibrations by using frequency up-conversion for wireless sensor applications. IEEE Sensors Journal, 8(3), 261–268.

    Article  Google Scholar 

  23. Jung, S.-M., & Yun, K.-S. (2010). Energy-harvesting device with mechanical frequency-up conversion mechanism for increased power efficiency and wideband operation. Applied Physics Letters, 96(11), 111906. 3pp.

    Article  Google Scholar 

  24. Edwards, B., Hu, P. A., & Aw, K. C. (2016). Validation of a hybrid electromagnetic–piezoelectric vibration energy harvester. Smart Materials and Structures, 25(5), 055019. (13 pp).

    Article  Google Scholar 

  25. Kwon, D.-S., Ko, H.-J., Kim, M.-O., Oh, Y., Sim, J., Lee, K., et al. (2014). Piezoelectric energy harvester converting strain energy into kinetic energy for extremely low frequency operation. Applied Physics Letters, 104(11), 113904. 3pp.

    Article  Google Scholar 

  26. Kwon, D.-S., Ko, H.-J., & Kim, J. (2017). Piezoelectric and electromagnetic hybrid energy harvester using two cantilevers for frequency up-conversion. In: IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), pp. 22–26.

  27. Oh, Y., Kwon, D.-S., Eun, Y., Kim, W., Kim, M.-O., Ko, H.-J., et al. (2019). Flexible energy harvester with piezoelectric and thermoelectric hybrid mechanisms for sustainable harvesting. International Journal of Precision Engineering and Manufacturing-Green Technology, 6, 691–698.

    Article  Google Scholar 

  28. Eun, Y., Kwon, D.-S., Kim, M.-O., Yoo, I., Sim, J., Ko, H.-J., et al. (2014). A flexible hybrid strain energy harvester using piezoelectric and electrostatic conversion. Smart Materials and Structures, 23(4), 045040. 6 pp.

    Article  Google Scholar 

  29. Zhao, C., Zhang, Q., Zhang, W., Du, X., Zhang, Y., Gong, S., et al. (2019). Hybrid piezo/triboelectric nanogenerator for highly efficient and stable rotation energy harvesting. Nano Energy, 57, 440–449.

    Article  Google Scholar 

  30. Zhao, L.-C., Zou, H.-X., Yan, G., Liu, F.-R., Tan, T., Zhang, W.-M., et al. (2019). A water-proof magnetically coupled piezoelectric-electromagnetic hybrid wind energy harvester. Applied Energy, 239, 735–746.

    Article  Google Scholar 

  31. Hamid, R., & Yuce, M. R. (2017). A wearable energy harvester unit using piezoelectric–electromagnetic hybrid technique. Sensors and Actuators A: Physical, 257, 198–207.

    Article  Google Scholar 

  32. Xia, H., Chen, R., & Ren, L. (2017). Parameter tuning of piezoelectric–electromagnetic hybrid vibration energy harvester by magnetic force: Modeling and experiment. Sensors and Actuators A: Physical, 257, 73–83.

    Article  Google Scholar 

  33. Li, Z., Li, T., Yang, Z., & Naguib, H. E. (2019). Toward a 0.33 W piezoelectric and electromagnetic hybrid energy harvester: Design, experimental studies and self-powered applications. Applied Energy, 255, 113805. 12 pp.

    Article  Google Scholar 

  34. Toyabur, R. M., Cho, S. M., H., & Park, J. Y. (2018). A multimodal hybrid energy harvester based on piezoelectric-electromagnetic mechanisms for low-frequenct ambient vibrations. Energy Conversion and Management, 168, 454–466.

    Article  Google Scholar 

  35. Fan, K., Tan, Q., Liu, H., Zhu, Y., Wang, W., & Zhang, D. (2018). Hybrid piezoelectric-electromagnetic energy harvester for scavenging energy from low-frequency excitations. Smart Materials and Structures, 27(8), 085001. 10 pp.

    Article  Google Scholar 

  36. Yang, B., & Yun, K.-S. (2012). Piezoelectric shell structures as wearable energy harvesters for effective power generation at low-frequency movement. Sensors and Actuators A: Physical, 188, 427–433.

    Article  Google Scholar 

  37. Hong, Y., Sui, L., Zhang, M., & Shi, G. (2018). Theoretical analysis and experimental study of the effect of the neutral plane of a composite piezoelectric cantilever. Energy Conversion and Management, 171, 1020–1029.

    Article  Google Scholar 

  38. Kim, G.-Y., Peddigari, M., Lim, K.-W., Hwang, G.-T., Yoon, W.-H., Choi, H., et al. (2018). Effect of thickness ratio in piezoelectric/elastic cantilever structure on the piezoelectric energy harvesting performance. Electronic Materials Letters, 15, 61–69.

    Article  Google Scholar 

  39. Wang, S.-W., Ke, Y.-W., & Huang, P.-C. (2018). Electromagnetic energy harvester interface design for wearable applications. IEEE Transactions on Circuits and Systems II: Express Briefs, 65, 667–671.

    Google Scholar 

  40. Kim, J. E., Kim, H., Yoon, H., Kim, Y. Y., & Youn, B. D. (2015). An energy conversion model for cantilevered piezoelectric vibration energy harvesters using only measurable parameters. International Journal of Precision Engineering and Manufacturing-Green Technology, 2, 51–57.

    Article  Google Scholar 

  41. Kim, J. E., Lee, S., & Kim, Y. Y. (2019). Mathematical model development, experimental validation and design parameter study of a folded two-degree-of-freedom piezoelectric vibration energy harvester. International Journal of Precision Engineering and Manufacturing-Green Technology, 6, 893–906.

    Article  Google Scholar 

  42. SoltanRezaee, M., Bodaghi, M., Farrokhabadi, A., & Hedayati, R. (2019). Nonlinear stability analysis of piecewise actuated piezoelectric microstructures. International Journal of Mechanical Sciences, 160, 200–208.

    Article  Google Scholar 

  43. SoltanRezaee, M., & Bodaghi, M. (2020). Nonlinear dynamic stability of piezoelectric thermoelastic electromechanical resonators. Scientific Reports, 10, 2982. 14 pp.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (Grant Nos. NRF-2018R1A2A1A05023070 and 2018R1A4A1025986) and the Research fund for a new professor by the SeoulTech(Seoul National University of Science and Technology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jongbaeg Kim.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1 (WMV 717 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pyo, S., Kwon, DS., Ko, HJ. et al. Frequency Up-Conversion Hybrid Energy Harvester Combining Piezoelectric and Electromagnetic Transduction Mechanisms. Int. J. of Precis. Eng. and Manuf.-Green Tech. 9, 241–251 (2022). https://doi.org/10.1007/s40684-021-00321-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-021-00321-y

Keywords

Navigation