Skip to main content
Log in

Calculation of Effect Ratio of 21 Geometric Errors and Detection of Surface Figure Error

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Traditionally, a machine tool is regarded as a rigid-multi body system, and it is studied by integrated geometric error modeling. Considering a three axis-machine, this study introduced the ratio and effects of the geometric errors on the surface figure error. First, based on synchronous iteration location, a surface matching model was employed to assess the coordinate measurement result. Subsequently, considering all the geometric error functions having the same parameters, the effect ratio and the surface figure error of a single geometric error were obtained. Concurrently, based on the effect ratio and surface figure error results, the main geometric errors were obtained, such as EZX, EZY, EAX, and COY. Moreover, the proposed method and the main errors were experimentally verified. By compensating the main errors, the sphere accuracy was improved by 53.4% and the flat accuracy by 70.0%. Additionally, the method proposed in this paper could be utilized to detect the surface figure error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Ramesh, R., Mannan, M. A., & Poo, A. N. (2000). Error compensation in machine tools-a review. Part I: Geometric, cutting-force induced and fixture-dependent error. International Journal of Machine Tools & Manufacture, 40(9), 1235–1256.

    Article  Google Scholar 

  2. Ramesh, R. (2000). Error compensation in machine tools-a review. Part II: Thermal errors. International Journal Of Machine Tools & Manufacture, 40(5), 45–62.

    Google Scholar 

  3. Donmez, A., Liu, C. R., Barash, M., et al. (1982). Statistical analysis of positioning error of a CNC milling machine. Journal of Manufacturing Systems, 1(1), 33–41.

    Article  Google Scholar 

  4. Wang, S. M., Lin, J. J., Ye, Z. Z., et al. (2014). A micro cutter auto-alignment system with on-machine positioning error measurement and compensation methods. International Journal of Precision Engineering & Manufacturing, 15(1), 177–182.

    Article  Google Scholar 

  5. Wang, Z., Chen, Y., et al. (2017). Effect of working position on vertical motion straightness of open hydrostatic guideways in grinding machine. Chinese Journal of Mechanical Engineering, 1(1), 12–29.

    Google Scholar 

  6. Zha, J., Xue, F., & Chen, Y. (2017). Straightness error modeling and compensation for gantry type open hydrostatic guideways in grinding machine. International Journal of Machine Tools & Manufacture, 112, 1–6.

    Article  Google Scholar 

  7. Tao, L., Xiaoqiang, P., Meng, G., Guipeng, T., Chaoliang, G., Junfeng, L., & Aihua, C. (2019). Design and manufacture of high accurate aerostatic guideway with glass material. International Journal of Precision Engineering and Manufacturing., 20(6), 949–962.

    Article  Google Scholar 

  8. Tao, L., Xiaoqiang, P., Junfeng, L., Chaoliang, G., Xiaogang, C., Guipeng, T., & Meng, G. (2019). Design optimization of high-precision aerostatic equipment based on orifice restriction. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science., 233(10), 3459–3474.

    Google Scholar 

  9. Yin, Z. Q., & Li, S. Y. (2006). High accuracy error separation technique for on-machine measuring straightness. Precision Engineering, 30(2), 192–200.

    Article  Google Scholar 

  10. Yin, Z. Q., & Li, S. Y. (2005). Exact straightness reconstruction for on-machine measuring precision artifact. Precision Engineering, 29(4), 456–466.

    Article  Google Scholar 

  11. Wang, F. F., & He, W. M. (2014). Online measurement experiment and data analysis of the slideway straightness motion error for CMM. Applied Mechanics and Materials, 529, 329–333.

    Article  Google Scholar 

  12. Huang, L. L., & Huang, F. G. (2012). Characteristics identification of straightness error on error separation technique. Applied Mechanics and Materials, 268–270, 1410–1415.

    Article  Google Scholar 

  13. Fung, E. H. K., & Yang, S. M. (2000). An error separation technique for measuring straightness motion error of a linear slide. Measurement Science and Technology, 11(10), 1515–1521.

    Article  Google Scholar 

  14. Han L, Zhang, D. W., Cui, L. Y. (2011). A novel method for roll error measurement of a linear worktable of a machine tool. In Materials Science Forum (pp. 301–304).

  15. Shimizu, Y., Kataoka, S., & Gao, W. (2018). High resolution clinometers for measurement of roll error motion of a precision linear slide. Chinese Journal of Mechanical Engineering, 31(1), 1–9.

    Article  Google Scholar 

  16. Fan, K. C., Wang, T. H., Lin, S. Y., et al. (2011). Design of a dual-axis optoelectronic level for precision angle measurements. Measurement Science and Technology, 22(5), 055302.

    Article  Google Scholar 

  17. Venkateswara, K., Hagedorn, C. A., Turner, M. D., et al. (2014). A high-precision mechanical absolute-rotation sensor. The Review of Scientific Instruments, 85(1), 015005.

    Article  Google Scholar 

  18. Alves, F. S., Dias, R. A., Cabral, J. M., et al. (2014). High-resolution MEMS inclinometer based on pull-in voltage. Journal of Microelectromechanical Systems, 1(1), 456–487.

    Google Scholar 

  19. Shimizu, Y., Kataoka, S., Ishikawa, T., et al. (2018). A liquid-surface-based three-axis inclination sensor for measurement of stage tilt motions. Sensors, 18(2), 2879–2891.

    Google Scholar 

  20. Qi, J., Wang, Z., Huang, J., Gao, J., et al. (2018). Resolution-enhanced heterodyne laser interferometer with differential configuration for roll angle measurement. Optics Express, 26(8), 9634–9644.

    Article  Google Scholar 

  21. Qi, J., Wang, Z., Huang, J., Wang, Q., Gao, J., et al. (2019). Heterodyne interferometer with two parallel-polarized input beams for high-resolution roll angle measurement. Optics Express, 27(10), 13820–13830.

    Article  Google Scholar 

  22. Shi, K., Junhong, Su., Hou, W., et al. (2018). Roll angle measurement system based on differential plane mirror interferometer. Optics Express, 26(16), 19826–19834.

    Article  Google Scholar 

  23. Tan, S. L., Shimizu, Y., Meguro, T., et al. (2015). Design of a laser autocollimator-based optical sensor with a rangefinder for error correction of precision slide guideways. International Journal of Precision Engineering and Manufacturing, 16(3), 423–431.

    Article  Google Scholar 

  24. Zhang, Y., & Zhang, L. (2017). Analysis of the identification principle of yaw error of five-axis machine tool rotary table in the virtue error sensitive direction based on the machining test In IOP conference series: Materials science and engineering (Vol. 281, p. 012054). IOP Publishing.

  25. Guo, S., Jiang, G., Zhang, D., et al. (2017). Position-independent geometric error identification and global sensitivity analysis for the rotary axes of five-axis machine tools. Measurement Science and Technology, 28(4), 045006.

    Article  Google Scholar 

  26. Zhou, Q., Anlagan, O., & Eman, K. (1986). A new method for measuring and compensating pitch error in the manufacturing of lead screws. International Journal of Machine Tool Design & Research, 26(4), 359–367.

    Article  Google Scholar 

  27. Sheng, L. F., Qun, L. L., Zheng, L. Z., et al. (2002). Pitch error compensation of CNC machine controlled by closed-loop. Journal of Luoyang Institute of Technology, 12(3), 10–17.

    Google Scholar 

  28. Xiang, S. (2018). Geometric error analysis and compensation for multi-axis spiral bevel gears milling machine. Mechanism and Machine Theory, 2017(121), 59–74.

    Article  Google Scholar 

  29. Lai, T., Peng, X., Tie, G., et al. (2017). High accurate squareness measurement squareness method for ultra-precision machine based on error separation. Precision Engineering, 49, 15–23.

    Article  Google Scholar 

  30. Tao, L., Xiaoqiang, P., Junfeng, L., Guipeng, T., & Meng, G. (2019). High accurate measurement and calibration of the squareness on ultra-precision machine based on error separation. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture., 233(2), 600–609.

    Article  Google Scholar 

  31. Tang, H., Duan, J. A., & Zhao, Q. (2017). A systematic approach on analyzing the relationship between straightness & angular errors and guideway surface in precise linear stage. International Journal of Machine Tools and Manufacture, 120, 12–19.

    Article  Google Scholar 

  32. Ekinci, T. O., & Mayer, J. R. R. (2007). Relationships between straightness and angular kinematic errors in machines. International Journal of Machine Tools and Manufacture, 47(12–13), 1997–2004.

    Article  Google Scholar 

  33. Ruijl, T. (2001). Ultra-precision coordinate measuring machine. Ph.D. thesis TU Delft (pp. 107–120).

  34. Zhu, S., Ding, G., Qin, S., et al. (2012). Integrated geometric error modeling, identification and compensation of CNC machine tools. International Journal of Machine Tools & Manufacture, 52(1), 24–29.

    Article  Google Scholar 

  35. Raksiri, C., & Parnichkun, M. (2004). Geometric and force errors compensation in a 3-axis CNC milling machine. International Journal of Machine Tools and Manufacture, 44(12–13), 1283–1291.

    Article  Google Scholar 

  36. Kwintarini, W., Wibowo, A., & Martawirya, Y. Y. (2016). Mathematical approach for geometric error modeling of three axis CNC vertical milling machine. Applied Mechanics and Materials, 842, 303–310.

    Article  Google Scholar 

  37. Hongfei, T., Ran, C., & Jianping, X. (2020). Prioritization analysis and compensation of geometric errors for ultra-precision lathe based on the random forest methodology. Precision Engineering, 61, 23–40.

    Article  Google Scholar 

  38. Huang, P. S., & Ni, J. (1995). On-line error compensation of coordinate measuring machines. International Journal of Machine Tools & Manufacture, 35(5), 725–738.

    Article  Google Scholar 

  39. Guoxiong, Z. (1997). Coordinate measuring machine (pp. 354–362). Tianjin: Tianjin University Press.

    Google Scholar 

  40. Peng, X., Yang, C., Hao, H., et al. (2017). Measurement and algorithm for localization of aspheric lens in magnetorheological finishing. International Journal of Advanced Manufacturing Technology, 88(9–12), 1–9.

    Google Scholar 

  41. Murray, R. M., Li, Z. X., & Sastry, S. S. (1994). A mathematical introduction to robotic manipulation (4th ed., pp. 14–79). Boca Raton: CRC.

    MATH  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Key Research and Development Program of China (2019YF0708903), Science Challenge Project of China (Grant No.TZ2018006-0101-01), Key Research and Development Plan (2016YFB1102304). With the help of Dr. Chen Xiyuan, some vital problem with this work was solved.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Lai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

For a three-axis machine, four relative moving parts and four coordinate frames are built, as shown in Fig. 1. At the initial position, the four origins were coincident. To obtain Perror (x’, y’, z’), first, the position of the stylus tip, P, in coordinate frame O3X3Y3Z3 is given by.

$${\varvec{O}}_{3} {\varvec{P}} = \left( {x_{p} ,y_{p} ,z_{p} } \right).$$
(16)

Subsequently, there were two steps to obtain the position of stylus tip P in the coordinate frame, O2X2Y2Z2. In the first step, the three axes of O3X3Y3Z3 were rotated parallel to the axes of O2X2Y2Z2, and the second step was that origin O3 moved to coincide with origin O2. Therefore, the position of P in the coordinate frame, O2X2Y2Z2, was successively.

$$\begin{aligned} &{\varvec{O}}_{2} {\varvec{P}} = {\varvec{O}}_{2} {\varvec{O}}_{3} + {\varvec{R}}^{ - 1} \left( {\varvec{z}} \right) \times {\varvec{O}}_{3} {\varvec{P}}, \hfill \\ &where \begin{array}{*{20}c} {\begin{array}{*{20}c} {{\varvec{O}}_{2} {\varvec{O}}_{3} = Z = \left[ {\begin{array}{*{20}c} {EXZ - zBOZ} \\ {EYZ - zAOZ} \\ {z + EZZ} \\ \end{array} } \right]} \\ &{R\left( z \right) = \left[ {\begin{array}{*{20}c} 1 & {ECZ} & { - EBZ} \\ { - ECZ} & 1 & {EAZ} \\ {EBZ} & { - EAZ} & 1 \\ \end{array} } \right],} \\ \end{array} } & \\ \end{array} \hfill \\ \end{aligned}$$
(17)

where matrix \({\mathrm{O}}_{2}{\mathrm{O}}_{3}\) \({\mathrm{O}}_{2}{\mathrm{O}}_{3}\) O2O3 is the linear movement matrix along the Z axis, and matrix R(z)\(\mathrm{R}(\mathrm{z})\) \(\mathrm{R}(\mathrm{z})\) is the rotation matrix.

Similarly, to obtain the position of P in the coordinate frame, O1X1Y1Z1, the three axes of O2X2Y2Z2 were rotated parallel to the axes of O1X1Y1Z1, and the origin, O2, was moved to coincide with origin O1 along with the Y axis. Therefore, the position of P in the coordinate frame, O1X1Y1Z1, was successively

$$\begin{aligned} & {\varvec{O}}_{1} {\varvec{P}} = {\varvec{O}}_{1} {\varvec{O}}_{2} + {\varvec{R}}^{{\left( { - 1} \right)}} \left( {\varvec{y}} \right) \times {\varvec{O}}_{2} \user2{P,} \\ & where\, O_{1} O_{2} = Y = \left[ {\begin{array}{*{20}c} {EXY - yCOY} \\ {y + EYY} \\ {EZY} \\ \end{array} } \right] \;and \\ & R\left( y \right) = \left[ {\begin{array}{*{20}c} 1 & {ECY} & { - EBY} \\ { - ECY} & 1 & {EAY} \\ {EBY} & { - EAY} & 1 \\ \end{array} } \right]. \\ \end{aligned}$$
(18)

The position of P in the coordinate frame, OXYZ, was successively.

$$\begin{aligned} & {\varvec{OP}} = {\varvec{OO}}_{1} + {\varvec{R}}^{{\left( { - 1} \right)}} \left( {\varvec{x}} \right) \times {\varvec{O}}_{1} {\varvec{P}}, \\ & where\; OO_{1} = X = \left[ {\begin{array}{*{20}c} {x + EXX} \\ {EYX} \\ {EZX} \\ \end{array} } \right]and \\ & {\varvec{R}}\left( x \right) = \left[ {\begin{array}{*{20}c} 1 & {ECX} & { - EBX} \\ { - ECX} & 1 & {EAX} \\ {EBX} & { - EAX} & 1 \\ \end{array} } \right]. \\ \end{aligned}$$
(19)

In fact, the position of P in the coordinate frame OXYZ is Perror (x’, y’, z’). The summation of (16)–(19) yields Eq. (1).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, T., Peng, X., Tie, G. et al. Calculation of Effect Ratio of 21 Geometric Errors and Detection of Surface Figure Error. Int. J. Precis. Eng. Manuf. 22, 523–538 (2021). https://doi.org/10.1007/s12541-021-00484-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-021-00484-3

Keywords

Navigation