Skip to main content
Log in

Recent advances on π-conjugated polymers as active elements in high performance organic field-effect transistors

  • Review Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

As high-performance organic semiconductors, π-conjugated polymers have attracted much attention due to their charming advantages including low-cost, solution processability, mechanical flexibility, and tunable optoelectronic properties. During the past several decades, the great advances have been made in polymers-based OFETs with p-type, n-type or even ambipolar characterics. Through chemical modification and alignment optimization, lots of conjugated polymers exhibited superior mobilities, and some mobilities are even larger than 10 cm2·V−1·s−1 in OFETs, which makes them very promising for the applications in organic electronic devices. This review describes the recent progress of the high performance polymers used in OFETs from the aspects of molecular design and assembly strategy. Furthermore, the current challenges and outlook in the design and development of conjugated polymers are also mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Yang, Z. Zhao, S. Wang, Y. Guo, and Y. Liu, Insight into high-performance conjugated polymers for organic field-effect transistors, Chem 4(12), 2748 (2018)

    Article  Google Scholar 

  2. L. Shi, Y. Guo, W. Hu, and Y. Liu, Design and effective synthesis methods for high-performance polymer semiconductors in organic field-effect transistors, Mater. Chem. Front. 1(12), 2423 (2017)

    Article  Google Scholar 

  3. Q. Zhang, Shooting flexible electronics, Front. Phys. 16(1), 13602 (2021)

    Article  ADS  Google Scholar 

  4. J. Y. Oh, S. Rondeau-Gagne, Y. C. Chiu, A. Chortos, F. Lissel, G. N. Wang, B. C. Schroeder, T. Kurosawa, J. Lopez, T. Katsumata, J. Xu, C. Zhu, X. Gu, W. G. Bae, Y. Kim, L. Jin, J. W. Chung, J. B. Tok, and Z. Bao, Intrinsically stretchable and healable semiconducting polymer for organic transistors, Nature 539(7629), 411 (2016)

    Article  ADS  Google Scholar 

  5. S. Wang, J. Xu, W. Wang, G. N. Wang, R. Rastak, F. Molina-Lopez, J. W. Chung, S. Niu, V. R. Feig, J. Lopez, T. Lei, S. K. Kwon, Y. Kim, A. M. Foudeh, A. Ehrlich, A. Gasperini, Y. Yun, B. Murmann, J. B. Tok, and Z. Bao, Skin electronics from scalable fabrication of an intrinsically stretchable transistor array, Nature 555(7694), 83 (2018)

    Article  ADS  Google Scholar 

  6. L. Hou, X. Zhang, G. F. Cotella, G. Carnicella, M. Herder, B. M. Schmidt, M. Patzel, S. Hecht, F. Cacialli, and P. Samori, Optically switchable organic light-emitting transistors, Nat. Nanotechnol. 14(4), 347 (2019)

    Article  ADS  Google Scholar 

  7. A. A. Argun, A. Cirpan, and J. R. Reynolds, The first truly all-polymer electrochromic devices, Adv. Mater. 15(16), 1338 (2003)

    Article  Google Scholar 

  8. G. Sonmez, H. Meng, Q. Zhang, and F. Wudl, A highly stable, new electrochromic polymers: Poly(1,bis(2-(3′,4′-ethylenedioxy)thienyl)-2-methoxy-5-2″-ethylhexyloxybenzene), Adv. Funct. Mater. 13(9), 726 (2003)

    Article  Google Scholar 

  9. F. Yu, W. Liu, S. W. Ke, M. Kurmoo, J. L. Zuo, and Q. Zhang, Electrochromic two-dimensional covalent organic framework with a revisable dark-to-transparent switch, Nat. Commun. 11(1), 5534 (2020)

    Article  ADS  Google Scholar 

  10. F. Yu, W. Liu, B. Li, D. Tian, J. L. Zuo, and Q. Zhang, Photo-stimulus-responsive large-area two-dimensional covalent-organic framework films, Angew. Chem. Int. Ed. 58(45), 16101 (2019)

    Article  Google Scholar 

  11. H. Wang, C. J. Yao, H. J. Nie, L. Yang, S. Mei, and Q. Zhang, Recent progress in integrated functional electrochromic energy storage devices, J. Mater. Chem. C 8(44), 15507 (2020)

    Article  Google Scholar 

  12. Y. Kim, C. Park, S. Im, and J. H. Kim, Design of intrinsically stretchable and highly conductive polymers for fully stretchable electrochromic devices, Sci. Rep. 10(1), 16488 (2020)

    Article  Google Scholar 

  13. S. Roy and C. Chakraborty, Nanostructured metallosupramolecular polymer-based gel-type electrochromic devices with ultrafast switching time and high colouration efficiency, J. Mater. Chem. C 7(10), 2871 (2019)

    Article  Google Scholar 

  14. L. Li, Q. D. Ling, S. L. Lim, Y. P. Tan, C. Zhu, D. S. H. Chan, E. T. Kang, and K. G. Neoh, A flexible polymer memory device, Org. Electron. 8(4), 401 (2007)

    Article  Google Scholar 

  15. M. Walter, F. Friess, M. Krus, S. M. H. Zolanvari, G. Grun, H. Krober, and T. Pretsch, Shape memory polymer foam with programmable apertures, Polymers (Basel) 12(9), 1914 (2020)

    Article  Google Scholar 

  16. S. Li, L. Zhan, C. Sun, H. Zhu, G. Zhou, W. Yang, M. Shi, C. Z. Li, J. Hou, Y. Li, and H. Chen, Highly efficient fullerene-free organic solar cells operate at near zero highest occupied molecular orbital offsets, J. Am. Chem. Soc. 141(7), 3073 (2019)

    Article  Google Scholar 

  17. W. Chen, X. Yang, G. Long, X. Wan, Y. Chen, and Q. Zhang, Perylene diimide (PDI)-based small molecule with tetrahedral configuration as non-fullerene acceptor for organic solar cells, J. Mater. Chem. C 3(18), 4698 (2015)

    Article  Google Scholar 

  18. W. Chen and Q. Zhang, Recent progress on non-fullerene small molecule acceptors in Organic Solar Cells (OSCs), J. Mater. Chem. C 5(6), 1275 (2017)

    Article  Google Scholar 

  19. X. Xu, Z. Li, Z. Bi, T. Yu, W. Ma, K. Feng, Y. Li, and Q. Peng, Highly efficient nonfullerene polymer solar cells enabled by a copper(I) coordination strategy employing a 1,3,4-oxadiazole-containing wide-bandgap copolymer donor, Adv. Mater. 30(28), 1800737 (2018)

    Article  Google Scholar 

  20. J. Hou, O. Inganas, R. H. Friend, and F. Gao, Organic solar cells based on non-fullerene acceptors, Nat. Mater. 17(2), 119 (2018)

    Article  ADS  Google Scholar 

  21. J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H. L. Yip, T. K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, and Y. Zou, Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core, Joule 3(4), 1140 (2019)

    Article  Google Scholar 

  22. L. Lu, M. A. Kelly, W. You, and L. Yu, Status and prospects for ternary organic photovoltaics, Nat. Photonics 9(8), 491 (2015)

    Article  ADS  Google Scholar 

  23. H. Wu, L. Ying, W. Yang, and Y. Cao, Progress and perspective of polymer white light-emitting devices and materials, Chem. Soc. Rev. 38(12), 3391 (2009)

    Article  Google Scholar 

  24. T. Yu, L. Liu, Z. Xie, and Y. Ma, Progress in small-molecule luminescent materials for organic light-emitting diodes, Sci. China Chem. 58(6), 907 (2015)

    Article  Google Scholar 

  25. A. Salleo, R. J. Kline, D. M. DeLongchamp, and M. L. Chabinyc, Microstructural characterization and charge transport in thin films of conjugated polymers, Adv. Mater. 22(34), 3812 (2010)

    Article  Google Scholar 

  26. Y. Xu, H. Sun, W. Li, Y. F. Lin, F. Balestra, G. Ghibaudo, and Y. Y. Noh, Exploring the charge transport in conjugated polymers, Adv. Mater. 29(41), 1702729 (2017)

    Article  Google Scholar 

  27. K. S. Park, J. J. Kwok, R. Dilmurat, G. Qu, P. Kafle, X. Luo, S.H. Jung, Y. Olivier, J. K. Lee, J. Mei, D. Beljonne, and Y. Diao, Tuning conformation, assembly, and charge transport properties of conjugated polymers by printing flow, Sci. Adv. 5(8), eaaw7757 (2019)

    Article  ADS  Google Scholar 

  28. R. Noriega, J. Rivnay, K. Vandewal, F. P. Koch, N. Stingelin, P. Smith, M. F. Toney, and A. Salleo, A general relationship between disorder, aggregation and charge transport in conjugated polymers, Nat. Mater. 12(11), 1038 (2013)

    Article  ADS  Google Scholar 

  29. Y. Zhao, X. Zhao, M. Roders, G. Qu, Y. Diao, A. L. Ayzner, and J. Mei, Complementary semiconducting polymer blends for efficient charge transport, Chem. Mater. 27(20), 7164 (2015)

    Article  Google Scholar 

  30. Y. Yang, Z. Liu, G. Zhang, X. Zhang, and D. Zhang, The effects of side chains on the charge mobilities and functionalities of semiconducting conjugated polymers beyond solubilities, Adv. Mater. 31(46), 1903104 (2019)

    Article  Google Scholar 

  31. M. Kim, S. U. Ryu, S. A. Park, K. Choi, T. Kim, D. Chung, and T. Park, Donor-acceptor-conjugated polymer for high-performance organic field-effect transistors: A progress report, Adv. Funct. Mater. 30(20), 1904545 (2020)

    Article  Google Scholar 

  32. H. Zhang, K. Yang, K. Zhang, Z. Zhang, Q. Sun, and W. Yang, Thionating iso-diketopyrrolopyrrole-based polymers: From p-type to ambipolar field effect transistors with enhanced charge mobility, Polym. Chem. 9(14), 1807 (2018)

    Article  Google Scholar 

  33. L. Chen, S. Chi, K. Zhao, J. Liu, X. Yu, and Y. Han, Aligned films of the DPP-Based conjugated polymer by solvent vapor enhanced drop casting, Polymer (Guildf.) 104, 123 (2016)

    Article  Google Scholar 

  34. J. Park, S. Lee, and H. H. Lee, High-mobility polymer thin-film transistors fabricated by solvent-assisted dropcasting, Org. Electron. 7(5), 256 (2006)

    Article  Google Scholar 

  35. E. Mohammadi, C. Zhao, Y. Meng, G. Qu, F. Zhang, X. Zhao, J. Mei, J. M. Zuo, D. Shukla, and Y. Diao, Dynamic-template-directed multiscale assembly for large-area coating of highly-aligned conjugated polymer thin films, Nat. Commun. 8(1), 16070 (2017)

    Article  ADS  Google Scholar 

  36. Q. Y. Li, Z. F. Yao, Y. Lu, S. Zhang, Z. Ahmad, J. Y. Wang, X. Gu, and J. Pei, Achieving high alignment of conjugated polymers by controlled dip-coating, Adv. Electron. Mater. 6(6), 2000080 (2020)

    Article  Google Scholar 

  37. J. Xu, H. C. Wu, C. Zhu, A. Ehrlich, L. Shaw, M. Nikolka, S. Wang, F. Molina-Lopez, X. Gu, S. Luo, D. Zhou, Y. H. Kim, G. N. Wang, K. Gu, V. R. Feig, S. Chen, Y. Kim, T. Katsumata, Y. Q. Zheng, H. Yan, J. W. Chung, J. Lopez, B. Murmann, and Z. Bao, Multi-scale ordering in highly stretchable polymer semiconducting films, Nat. Mater. 18(6), 594 (2019)

    Article  ADS  Google Scholar 

  38. X. Cao, Z. Du, L. Chen, K. Zhao, H. Li, J. Liu, and Y. Han, Long diketopyrrolopyrrole-based polymer nanowires prepared by decreasing the aggregate speed of the polymer in solution, Polymer (Guildf.) 118, 135 (2017)

    Article  Google Scholar 

  39. G. G. Jeon, M. Lee, J. Nam, W. Park, M. Yang, J. H. Choi, D. K. Yoon, E. Lee, B. Kim, and J. H. Kim, Simple solvent engineering for high-mobility and thermally robust conjugated polymer nanowire field-effect transistors, ACS Appl. Mater. Interfaces 10(35), 29824 (2018)

    Article  Google Scholar 

  40. K. J. Ihn, J. Moulton, and P. Smith, Whiskers of poly (3-alkylthiophene)s, J. Polym. Sci. B 31(6), 735 (1993)

    Article  Google Scholar 

  41. X. Cao, L. Chen, K. Zhao, J. Liu, and Y. Han, Diketopyrrolopyrrole-based polymer nanowires: Control of chain conformation and nucleation, J. Polym. Sci. B 56(11), 833 (2018)

    Article  Google Scholar 

  42. J. Qian, G. Guerin, Y. Lu, G. Cambridge, I. Manners, and M. A. Winnik, Self-seeding in one dimension: An approach to control the length of fiberlike polyisoprenepolyferrocenylsilane block copolymer micelles, Angew. Chem. Int. Ed. 50(7), 1622 (2011)

    Article  Google Scholar 

  43. J. Y. Oh, M. Shin, T. I. Lee, W. S. Jang, Y. Min, J. M. Myoung, H. K. Baik, and U. Jeong, Self-seeded growth of poly(3-hexylthiophene) (P3HT) nanofibrils by a cycle of cooling and heating in solutions, Macromolecules 45(18), 7504 (2012)

    Article  ADS  Google Scholar 

  44. D. Venkateshvaran, M. Nikolka, A. Sadhanala, V. Lemaur, M. Zelazny, M. Kepa, M. Hurhangee, A. J. Kronemeijer, V. Pecunia, I. Nasrallah, I. Romanov, K. Broch, I. McCulloch, D. Emin, Y. Olivier, J. Cornil, D. Beljonne, and H. Sirringhaus, Approaching disorder-free transport in high-mobility conjugated polymers, Nature 515(7527), 384 (2014)

    Article  ADS  Google Scholar 

  45. P. H. Chu, N. Kleinhenz, N. Persson, M. McBride, J. L. Hernandez, B. Fu, G. Zhang, and E. Reichmanis, Toward precision control of nanofiber orientation in conjugated polymer thin films: impact on charge transport, Chem. Mater. 28(24), 9099 (2016)

    Article  Google Scholar 

  46. I. Botiz and N. Stingelin, Influence of molecular conformations and microstructure on the optoelectronic properties of conjugated polymers, Materials (Basel) 7(3), 2273 (2014)

    Article  ADS  Google Scholar 

  47. P. Prins, F. C. Grozema, J. M. Schins, S. Patil, U. Scherf, and L. D. Siebbeles, High intrachain hole mobility on molecular wires of ladder-type poly(p-phenylenes), Phys. Rev. Lett. 96(14), 146601 (2006)

    Article  ADS  Google Scholar 

  48. L. Bürgi, T. J. Richards, R. H. Friend, and H. Sirringhaus, Close look at charge carrier injection in polymer field-effect transistors, J. Appl. Phys. 94(9), 6129 (2003)

    Article  ADS  Google Scholar 

  49. V. Chaudhary, R. K. Pandey, R. Prakash, N. Kumar, and A. K. Singh, Highly aligned and crystalline poly(3-hexylthiophene) thin films by off-center spin coating for high performance organic field-effect transistors, Synth. Met. 258, 116221 (2019)

    Article  Google Scholar 

  50. D. Alberga, A. Perrier, I. Ciofini, G. F. Mangiatordi, G. Lattanzi, and C. Adamo, Morphological and charge transport properties of amorphous and crystalline P3HT and PBTTT: Insights from theory, Phys. Chem. Chem. Phys. 17(28), 18742 (2015)

    Article  Google Scholar 

  51. Y. Lei, P. Deng, Q. Zhang, Z. Xiong, Q. Li, J. Mai, X. Lu, X. Zhu, and B. S. Ong, Hydrocarbons-driven crystallization of polymer semiconductors for low-temperature fabrication of high-performance organic field-effect transistors, Adv. Funct. Mater. 28(15), 1706372 (2018)

    Article  Google Scholar 

  52. S. Wang, S. Fabiano, S. Himmelberger, S. Puzinas, X. Crispin, A. Salleo, and M. Berggren, Experimental evidence that short-range intermolecular aggregation is sufficient for efficient charge transport in conjugated polymers, Proc. Natl. Acad. Sci. USA 112(34), 10599 (2015)

    Article  ADS  Google Scholar 

  53. X. Guo, A. Facchetti, and T. J. Marks, Imide- and amide-functionalized polymer semiconductors, Chem. Rev. 114(18), 8943 (2014)

    Article  Google Scholar 

  54. Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J.-L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, A universal method to produce low-work function electrodes for organic electronics, Science 336(6079), 327 (2012)

    Article  ADS  Google Scholar 

  55. M. Tantiwiwat, A. Tamayo, N. Luu, X. D. Dang, and T. Q. Nguyen, Oligothiophene derivatives functionalized with a diketopyrrolopyrrolo core for solution-processed field effect transistors: Effect of alkyl substituents and thermal annealing, J. Phys. Chem. C 112(44), 17402 (2008)

    Article  Google Scholar 

  56. M. Gruber, S. H. Jung, S. Schott, D. Venkateshvaran, A. J. Kronemeijer, J. W. Andreasen, C. R. McNeill, W. W. H. Wong, M. Shahid, M. Heeney, J. K. Lee, and H. Sirringhaus, Enabling high-mobility, ambipolar charge-transport in a DPP-benzotriazole copolymer by side-chain engineering, Chem. Sci. (Camb.) 6(12), 6949 (2015)

    Article  Google Scholar 

  57. W. Hong, S. Chen, B. Sun, M. A. Arnould, Y. Meng, and Y. Li, Is a polymer semiconductor having a “perfect” regular structure desirable for organic thin film transistors? Chem. Sci. (Camb.) 6(5), 3225 (2015)

    Article  Google Scholar 

  58. Y. Yu, Y. Wu, A. Zhang, C. Li, Z. Tang, W. Ma, Y. Wu, and W. Li, Diketopyrrolopyrrole polymers with Thienyl and Thiazolyl linkers for application in field-effect transistors and polymer solar cells, ACS Appl. Mater. Interfaces 8(44), 30328 (2016)

    Article  Google Scholar 

  59. A. Zhang, C. Xiao, Y. Wu, C. Li, Y. Ji, L. Li, W. Hu, Z. Wang, W. Ma, and W. Li, Effect of fluorination on molecular orientation of conjugated polymers in high performance field-effect transistors, Macromolecules 49(17), 6431 (2016)

    Article  ADS  Google Scholar 

  60. Y. Yang, Z. Liu, L. Chen, J. Yao, G. Lin, X. Zhang, G. Zhang, and D. Zhang, Conjugated semiconducting polymer with thymine groups in the side chains: Charge mobility enhancement and application for selective field-effect transistor sensors toward CO and H2S, Chem. Mater. 31(5), 1800 (2019)

    Article  Google Scholar 

  61. A. R. Han, G. K. Dutta, J. Lee, H. R. Lee, S. M. Lee, H. Ahn, T. J. Shin, J. H. Oh, and C. Yang, ϵ-branched flexible side chain substituted diketopyrrolopyrrole-containing polymers designed for high hole and electron mobilities, Adv. Funct. Mater. 25(2), 247 (2015)

    Article  Google Scholar 

  62. Z. Wang, Z. Liu, L. Ning, M. Xiao, Y. Yi, Z. Cai, A. Sadhanala, G. Zhang, W. Chen, H. Sirringhaus, and D. Zhang, Charge mobility enhancement for conjugated dpp-selenophene polymer by simply replacing one bulky branching alkyl chain with linear one at each DPP unit, Chem. Mater. 30(9), 3090 (2018)

    Article  Google Scholar 

  63. J. Li, Y. Zhao, H. S. Tan, Y. Guo, C. A. Di, G. Yu, Y. Liu, M. Lin, S. H. Lim, Y. Zhou, H. Su, and B. S. Ong, A stable solution-processed polymer semiconductor with record high-mobility for printed transistors, Sci. Rep. 2(1), 754 (2012)

    Article  Google Scholar 

  64. Y. Lei, P. Deng, J. Li, M. Lin, F. Zhu, T. W. Ng, C. S. Lee, and B. S. Ong, Solution-processed donor-acceptor polymer nanowire network semiconductors for high-performance field-effect transistors, Sci. Rep. 6(1), 24476 (2016)

    Article  ADS  Google Scholar 

  65. B. C. Schroeder, T. Kurosawa, T. Fu, Y. Chiu, J. Mun, G. N. Wang, X. Gu, L. Shaw, J. W. E. Kneller, T. Kreouzis, M. F. Toney, and Z. Bao, Taming charge transport in semiconducting polymers with branched alkyl side chains, Adv. Funct. Mater. 27(34), 1701973 (2017)

    Article  Google Scholar 

  66. C. Xiao, G. Zhao, A. Zhang, W. Jiang, R. A. Janssen, W. Li, W. Hu, and Z. Wang, High performance polymer nanowire field-effect transistors with distinct molecular orientations, Adv. Mater. 27(34), 4963 (2015)

    Article  Google Scholar 

  67. J. Xu, S. Wang, G. N. Wang, C. Zhu, S. Luo, L. Jin, X. Gu, S. Chen, V. Feig, J. W. F. To, S. R. Gagné, J. Park, B. C. Schroeder, C. Lu, J. Oh, Y. Wang, Y. H. Kim, H. Yan, R. Sinclair, D. Zhou, G. Xue, B. Murmann, C. Linder, W. Cai, J. B. H. Tok, J. W. Chung, and Z. Bao, Highly stretchable polymer semiconductor films through the nanoconfinement effect, Science 355(6320), 59 (2017)

    Article  ADS  Google Scholar 

  68. H. Chen, Y. Guo, G. Yu, Y. Zhao, J. Zhang, D. Gao, H. Liu, and Y. Liu, Highly Pi-extended copolymers with diketopyrrolopyrrole moieties for high-performance field-effect transistors, Adv. Mater. 24(34), 4618 (2012)

    Article  Google Scholar 

  69. H. Yu, K. H. Park, I. Song, M. J. Kim, Y. H. Kim, and J. H. Oh, Effect of the alkyl spacer length on the electrical performance of diketopyrrolopyrrole-thiophene vinylene thiophene polymer semiconductors, J. Mater. Chem. C 3(44), 11697 (2015)

    Article  Google Scholar 

  70. J. Y. Back, H. Yu, I. Song, I. Kang, H. Ahn, T. J. Shin, S. K. Kwon, J. H. Oh, and Y. H. Kim, Investigation of structure-property relationships in diketopyrrolopyrrole-based polymer semiconductors via side-chain engineering, Chem. Mater. 27(5), 1732 (2015)

    Article  Google Scholar 

  71. I. Kang, H. J. Yun, D. S. Chung, S. K. Kwon, and Y. H. Kim, Record high hole mobility in polymer semiconductors via side-chain engineering, J. Am. Chem. Soc. 135(40), 14896 (2013)

    Article  Google Scholar 

  72. H. H. Choi, J. Y. Baek, E. Song, B. Kang, K. Cho, S. K. Kwon, and Y. H. Kim, A pseudo-regular alternating conjugated copolymer using an asymmetric monomer: a high-mobility organic transistor in nonchlorinated solvents, Adv. Mater. 27(24), 3626 (2015)

    Article  Google Scholar 

  73. X. Zhang, H. Bronstein, A. J. Kronemeijer, J. Smith, Y. Kim, R. J. Kline, L. J. Richter, T. D. Anthopoulos, H. Sirringhaus, K. Song, M. Heeney, W. Zhang, I. McCulloch, and D. M. DeLongchamp, Molecular origin of high field-effect mobility in an indacenodithiophene-benzothiadiazole copolymer, Nat. Commun. 4(1), 2238 (2013)

    Article  ADS  Google Scholar 

  74. A. Wadsworth, H. Chen, K. J. Thorley, C. Cendra, M. Nikolka, H. Bristow, M. Moser, A. Salleo, T. D. Anthopoulos, H. Sirringhaus, and I. McCulloch, Modification of indacenodithiophene-based polymers and its impact on charge carrier mobility in organic thin-film transistors, J. Am. Chem. Soc. 142(2), 652 (2020)

    Article  Google Scholar 

  75. H. Bronstein, D. S. Leem, R. Hamilton, P. Woebkenberg, S. King, W. Zhang, R. S. Ashraf, M. Heeney, T. D. Anthopoulos, J. Mello, and I. McCulloch, Indacenodithiophene-Co-benzothiadiazole copolymers for high performance solar cells or transistors via alkyl chain optimization, Macromolecules 44(17), 6649 (2011)

    Article  ADS  Google Scholar 

  76. J. H. Kim, M. W. Choi, W. S. Yoon, S. Oh, S. H. Hong, and S. Y. Park, Structural and electronic origin of bislactam-based high-performance organic thin-film transistors, ACS Appl. Mater. Interfaces 11(8), 8301 (2019)

    Article  Google Scholar 

  77. Z. Fei, Y. Han, E. Gann, T. Hodsden, A. S. R. Chesman, C. R. McNeill, T. D. Anthopoulos, and M. Heeney, Alkylated selenophene-based ladder-type monomers via a facile route for high-performance thin-film transistor applications, J. Am. Chem. Soc. 139(25), 8552 (2017)

    Article  Google Scholar 

  78. H. Chen, A. Wadsworth, C. Ma, A. Nanni, W. Zhang, M. Nikolka, A. M. T. Luci, L. M. A. Perdigao, K. J. Thorley, C. Cendra, B. Larson, G. Rumbles, T. D. Anthopoulos, A. Salleo, G. Costantini, H. Sirringhaus, and I. McCulloch, The effect of ring expansion in thienobenzo[b]indacenodithiophene polymers for organic field-effect transistors, J. Am. Chem. Soc. 141(47), 18806 (2019)

    Article  Google Scholar 

  79. W. Zhang, Y. Han, X. Zhu, Z. Fei, Y. Feng, N. D. Treat, H. Faber, N. Stingelin, I. McCulloch, T. D. Anthopoulos, and M. Heeney, A novel alkylated indacenodithieno[3,2-b]thiophene-based polymer for high-performance field-effect transistors, Adv. Mater. 28(20), 3922 (2016)

    Article  Google Scholar 

  80. H. Chen, M. Hurhangee, M. Nikolka, W. Zhang, M. Kirkus, M. Neophytou, S. J. Cryer, D. Harkin, P. Hayoz, M. Abdi-Jalebi, C. R. McNeill, H. Sirringhaus, and I. Mc-Culloch, Dithiopheneindenofluorene (tif) semiconducting polymers with very high mobility in field-effect transistors, Adv. Mater. 29(36), 1702523 (2017)

    Article  Google Scholar 

  81. M. Zhang, H. N. Tsao, W. Pisula, C. Yang, A. K. Mishra, and K. Müllen, Field-effect transistors based on a benzothiadiazole cyclopentadithiophene copolymer, J. Am. Chem. Soc. 129(12), 3472 (2007)

    Article  Google Scholar 

  82. H. N. Tsao, D. M. Cho, I. Park, M. R. Hansen, A. Mavrinskiy, D. Y. Yoon, R. Graf, W. Pisula, H. W. Spiess, and K. Mullen, Ultrahigh mobility in polymer field-effect transistors by design, J. Am. Chem. Soc. 133(8), 2605 (2011)

    Article  Google Scholar 

  83. S. Wang, M. Kappl, I. Liebewirth, M. Muller, K. Kirchhoff, W. Pisula, and K. Mullen, Organic field-effect transistors based on highly ordered single polymer fibers, Adv. Mater. 24(3), 417 (2012)

    Article  Google Scholar 

  84. Y. Yamashita, F. Hinkel, T. Marszalek, W. Zajaczkowski, W. Pisula, M. Baumgarten, H. Matsui, K. Müllen, and J. Takeya, Mobility exceeding 10 cm2/(V·s) in donor-acceptor polymer transistors with band-like charge transport, Chem. Mater. 28(2), 420 (2016)

    Article  Google Scholar 

  85. C. Luo, A. K. Kyaw, L. A. Perez, S. Patel, M. Wang, B. Grimm, G. C. Bazan, E. J. Kramer, and A. J. Heeger, General strategy for self-assembly of highly oriented nanocrystalline semiconducting polymers with high mobility, Nano Lett. 14(5), 2764 (2014)

    Article  ADS  Google Scholar 

  86. Y. Park, J. W. Jung, H. Kang, J. Seth, Y. Kang, and M. M. Sung, Single-crystal poly[4-(4,4-dihexadecyl-4H-cyclopenta[1,2-b:5,4-b′]dithiophen-2-yl)-alt-[1,2,5]thiadiazolo[3,4-c]pyridine] nanowires with ultrahigh mobility, Nano Lett. 19(2), 1028 (2019)

    Article  ADS  Google Scholar 

  87. M. Wang, M. J. Ford, C. Zhou, M. Seifrid, T. Q. Nguyen, and G. C. Bazan, Linear conjugated polymer backbones improve alignment in nanogroove-assisted organic field-effect transistors, J. Am. Chem. Soc. 139(48), 17624 (2017)

    Article  Google Scholar 

  88. J. Lee, S. H. Kang, S. M. Lee, K. C. Lee, H. Yang, Y. Cho, D. Han, Y. Li, B. H. Lee, and C. Yang, An ultrahigh mobility in isomorphic fluorobenzo[c][1,2,5]thiadiazole-based polymers, Angew. Chem. Int. Ed. 57(41), 13629 (2018)

    Article  Google Scholar 

  89. B. Nketia-Yawson, H. S. Lee, D. Seo, Y. Yoon, W. T. Park, K. Kwak, H. J. Son, B. Kim, and Y. Y. Noh, A highly planar fluorinated benzothiadiazole-based conjugated polymer for high-performance organic thin-film transistors, Adv. Mater. 27(19), 3045 (2015)

    Article  Google Scholar 

  90. B. Nketia-Yawson, A. R. Jung, H. D. Nguyen, K. K. Lee, B. Kim, and Y. Y. Noh, Difluorobenzothiadiazole and selenophene-based conjugated polymer demonstrating an effective hole mobility exceeding 5cm2·V1·s1 with solid-state electrolyte dielectric, ACS Appl. Mater. Interfaces 10(38), 32492 (2018)

    Article  Google Scholar 

  91. T. Lei, J. Y. Wang, and J. Pei, Design, synthesis, and structure-property relationships of isoindigo-based conjugated polymers, Acc. Chem. Res. 47(4), 1117 (2014)

    Article  Google Scholar 

  92. T. Lei, Y. Cao, Y. Fan, C. J. Liu, S. C. Yuan, and J. Pei, High-performance air-stable organic field-effect transistors: Isoindigo-based conjugated polymers, J. Am. Chem. Soc. 133(16), 6099 (2011)

    Article  Google Scholar 

  93. T. Lei, J. H. Dou, and J. Pei, Influence of alkyl chain branching positions on the hole mobilities of polymer thin-film transistors, Adv. Mater. 24(48), 6457 (2012)

    Article  Google Scholar 

  94. J. Mei, D. H. Kim, A. L. Ayzner, M. F. Toney, and Z. Bao, Siloxane-terminated solubilizing side chains: Bringing conjugated polymer backbones closer and boosting hole mobilities in thin-film transistors, J. Am. Chem. Soc. 133(50), 20130 (2011)

    Article  Google Scholar 

  95. H. C. Wu, C. C. Hung, C. W. Hong, H. S. Sun, J. T. Wang, G. Yamashita, T. Higashihara, and W. C. Chen, Isoindigo-based semiconducting polymers using carbosilane side chains for high performance stretchable field-effect transistors, Macromolecules 49(22), 8540 (2016)

    Article  ADS  Google Scholar 

  96. G. Xue, X. Zhao, G. Qu, T. Xu, A. Gumyusenge, Z. Zhang, Y. Zhao, Y. Diao, H. Li, and J. Mei, Symmetry breaking in side chains leading to mixed orientations and improved charge transport in isoindigo-alt-bithiophene based polymer thin films, ACS Appl. Mater. Interfaces 9(30), 25426 (2017)

    Article  Google Scholar 

  97. J. Mei, H. Wu, Y. Diao, A. Appleton, H. Wang, Y. Zhou, W. Y. Lee, T. Kurosawa, W. C. Chen, and Z. Bao, Effect of spacer length of siloxane-terminated side chains on charge transport in isoindigo-based polymer semiconductor thin films, Adv. Funct. Mater. 25(23), 3455 (2015)

    Article  Google Scholar 

  98. H. T. Nicolai, M. Kuik, G. A. Wetzelaer, B. de Boer, C. Campbell, C. Risko, J. L. Bredas, and P. W. Blom, Unification of trap-limited electron transport in semiconducting polymers, Nat. Mater. 11(10), 882 (2012)

    Article  ADS  Google Scholar 

  99. R. Zhao, Y. Min, C. Dou, B. Lin, W. Ma, J. Liu, and L. Wang, A conjugated polymer containing a B ← N unit for unipolar n-type organic field-effect transistors, ACS Appl. Polym. Mater. 2(1), 19 (2020)

    Article  Google Scholar 

  100. H. Yan, Z. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dotz, M. Kastler, and A. Facchetti, A high-mobility electron-transporting polymer for printed transistors, Nature 457(7230), 679 (2009)

    Article  ADS  Google Scholar 

  101. Y. J. Kim, N. K. Kim, W. T. Park, C. Liu, Y. Y. Noh, and D. Y. Kim, Kinetically controlled crystallization in conjugated polymer films for high-performance organic field-effect transistors, Adv. Funct. Mater. 29(23), 1807786 (2019)

    Article  Google Scholar 

  102. D. H. Lee, M. Kang, D. H. Lim, Y. Kim, J. Lee, D. Y. Kim, and K. J. Baeg, Simultaneous enhancement of charge density and molecular stacking order of polymer semiconductors by viologen dopants for high performance organic field-effect transistors, J. Mater. Chem. C 6(20), 5497 (2018)

    Article  Google Scholar 

  103. T. Kurosawa, Y. C. Chiu, Y. Zhou, X. Gu, W. C. Chen, and Z. Bao, Impact of polystyrene oligomer side chains on naphthalene diimide-bithiophene polymers as n-type semiconductors for organic field-effect transistors, Adv. Funct. Mater. 26(8), 1261 (2016)

    Article  Google Scholar 

  104. J. Panidi, J. Kainth, A. F. Paterson, S. Wang, L. Tsetseris, A. H. Emwas, M. A. McLachlan, M. Heeney, and T. D. Anthopoulos, Introducing a nonvolatile N-type dopant drastically improves electron transport in polymer and small-molecule organic transistors, Adv. Funct. Mater. 29(34), 1902784 (2019)

    Article  Google Scholar 

  105. W. Wang, R. Chen, Y. Hu, H. Lu, L. Qiu, Y. Ding, D. Sun, and G. Zhang, High-efficiency synthesis of a naphthalene-diimide-based conjugated polymer using continuous flow technology for organic field-effect transistors, J. Mater. Chem. C 7(27), 8450 (2019)

    Article  Google Scholar 

  106. B. Kang, R. Kim, S. B. Lee, S. K. Kwon, Y. H. Kim, and K. Cho, Side-chain-induced rigid backbone organization of polymer semiconductors through semifluoroalkyl side chains, J. Am. Chem. Soc. 138(11), 3679 (2016)

    Article  Google Scholar 

  107. R. Kim, P. S. K. Amegadze, I. Kang, H. J. Yun, Y. Y. Noh, S. K. Kwon, and Y. H. Kim, High-mobility air-stable naphthalene diimide-based copolymer containing extended π-conjugation for n-channel organic field effect transistors, Adv. Funct. Mater. 23(46), 5719 (2013)

    Article  Google Scholar 

  108. R. Kim, B. Kang, D. H. Sin, H. H. Choi, S. K. Kwon, Y. H. Kim, and K. Cho, Oligo(ethylene glycol)-incorporated hybrid linear alkyl side chains for n-channel polymer semiconductors and their effect on the thin-film crystalline structure, Chem. Commun. (Camb.) 51(8), 1524 (2015)

    Article  Google Scholar 

  109. J. Ma, Z. Zhao, Y. Guo, H. Geng, Y. Sun, J. Tian, Q. He, Z. Cai, X. Zhang, G. Zhang, Z. Liu, D. Zhang, and Y. Liu, Improving the electronic transporting property for flexible field-effect transistors with naphthalene diimide-based conjugated polymer through branching/linear side-chain engineering strategy, ACS Appl. Mater. Interfaces 11(17), 15837 (2019)

    Article  Google Scholar 

  110. Y. Wang, T. Hasegawa, H. Matsumoto, T. Mori, and T. Michinobu, High-performance n-channel organic transistors using high-molecular-weight electron-deficient copolymers and amine-tailed self-assembled monolayers, Adv. Mater. 30(13), 1707164 (2018)

    Article  Google Scholar 

  111. Y. Wang, T. Hasegawa, H. Matsumoto, and T. Michinobu, Significant improvement of unipolar n-type transistor performances by manipulating the coplanar backbone conformation of electron-deficient polymers via hydrogen bonding, J. Am. Chem. Soc. 141(8), 3566 (2019)

    Article  Google Scholar 

  112. Y. Wang, S. W. Kim, J. Lee, H. Matsumoto, B. J. Kim, and T. Michinobu, Dual imide-functionalized unit-based regioregular D-A1-D-A2 polymers for efficient unipolar n-channel organic transistors and all-polymer solar cells, ACS Appl. Mater. Interfaces 11(25), 22583 (2019)

    Article  Google Scholar 

  113. Z. Zhao, Z. Yin, H. Chen, L. Zheng, C. Zhu, L. Zhang, S. Tan, H. Wang, Y. Guo, Q. Tang, and Y. Liu, High-performance, air-stable field-effect transistors based on heteroatom-substituted naphthalenediimide-benzothiadiazole copolymers exhibiting ultrahigh electron mobility up to 8.5 cm2·V1·s1, Adv. Mater. 29(4), 1602410 (2017)

    Article  Google Scholar 

  114. L. Zhang, Z. Wang, C. Duan, Z. Wang, Y. Deng, J. Xu, F. Huang, and Y. Cao, Conjugated polymers based on thiazole flanked naphthalene diimide for unipolar n-type organic field-effect transistors, Chem. Mater. 30(22), 8343 (2018)

    Article  Google Scholar 

  115. J. T. E. Quinn, J. Zhu, X. Li, J. Wang, and Y. Li, Recent progress in the development of n-type organic semiconductors for organic field effect transistors, J. Mater. Chem. C 5(34), 8654 (2017)

    Article  Google Scholar 

  116. C. Kanimozhi, N. Yaacobi-Gross, K. W. Chou, A. Amassian, T. D. Anthopoulos, and S. Patil, Diketopyrrolopyrrole-diketopyrrolopyrrole-based conjugated copolymer for high-mobility organic field-effect transistors, J. Am. Chem. Soc. 134(40), 16532 (2012)

    Article  Google Scholar 

  117. J. H. Park, E. H. Jung, J. W. Jung, and W. H. Jo, A fluorinated phenylene unit as a building block for high-performance n-type semiconducting polymer, Adv. Mater. 25(18), 2583 (2013)

    Article  Google Scholar 

  118. H. J. Yun, S. J. Kang, Y. Xu, S. O. Kim, Y. H. Kim, Y. Y. Noh, and S. K. Kwon, Dramatic inversion of charge polarity in diketopyrrolopyrrole-based organic field-effect transistors via a simple nitrile group substitution, Adv. Mater. 26(43), 7300 (2014)

    Article  Google Scholar 

  119. H. Yu, H. N. Kim, I. Song, Y. H. Ha, H. Ahn, J. H. Oh, and Y. H. Kim, Effect of alkyl chain spacer on charge transport in n-type dominant polymer semiconductors with a diketopyrrolopyrrole-thiophene-bithiazole acceptor-donor-acceptor unit, J. Mater. Chem. C 5(14), 3616 (2017)

    Article  Google Scholar 

  120. Z. Ni, H. Dong, H. Wang, S. Ding, Y. Zou, Q. Zhao, Y. Zhen, F. Liu, L. Jiang, and W. Hu, Quinoline-flanked diketopyrrolopyrrole copolymers breaking through electron mobility over 6 cm2·V1·s1 in flexible thin film devices, Adv. Mater. 30(10), 1704843 (2018)

    Article  Google Scholar 

  121. X. Yan, M. Xiong, J. T. Li, S. Zhang, Z. Ahmad, Y. Lu, Z. Y. Wang, Z. F. Yao, J. Y. Wang, X. Gu, and T. Lei, Pyrazine-flanked diketopyrrolopyrrole (DPP): A new polymer building block for high-performance n-type organic thermoelectrics, J. Am. Chem. Soc. 141(51), 20215 (2019)

    Article  Google Scholar 

  122. C. J. Yao, H. L. Zhang, and Q. Zhang, Recent progress in thermoelectric materials based on conjugated polymers, Polymers (Basel) 11(1), 107 (2019)

    Article  Google Scholar 

  123. J. Xie, C. E. Zhao, Z. Lin, P. Gu, and Q. Zhang, Nanostructured conjugated polymers for energy-related applications beyond solar cells, Chem. Asian J. 11(10), 1489 (2016)

    Article  Google Scholar 

  124. P. Deng and Q. Zhang, Recent developments on isoindigo-based conjugated polymers, Polym. Chem. 5(10), 3298 (2014)

    Article  Google Scholar 

  125. Y. Olivier, D. Niedzialek, V. Lemaur, W. Pisula, K. Mullen, U. Koldemir, J. R. Reynolds, R. Lazzaroni, J. Cornil, and D. Beljonne, High-mobility hole and electron transport conjugated polymers: How structure defines function, Adv. Mater. 26(14), 2119 (2014)

    Article  Google Scholar 

  126. G. Kim, A. R. Han, H. R. Lee, J. Lee, J. H. Oh, and C. Yang, Acceptor-acceptor type isoindigo-based copolymers for high-performance n-channel field-effect transistors, Chem. Commun. (Camb.) 50(17), 2180 (2014)

    Article  Google Scholar 

  127. W. Yue, M. Nikolka, M. Xiao, A. Sadhanala, C. B. Nielsen, A. J. P. White, H. Y. Chen, A. Onwubiko, H. Sirringhaus, and I. McCulloch, Azaisoindigo conjugated polymers for high performance n-type and ambipolar thin film transistor applications, J. Mater. Chem. C 4(41), 9704 (2016)

    Article  Google Scholar 

  128. Y. Gao, Y. Deng, H. Tian, J. Zhang, D. Yan, Y. Geng, and F. Wang, Multifluorination toward high-mobility ambipolar and unipolar n-type donor-acceptor conjugated polymers based on isoindigo, Adv. Mater. 29(13), 1606217 (2017)

    Article  Google Scholar 

  129. F. Chen, Y. Jiang, Y. Sui, J. Zhang, H. Tian, Y. Han, Y. Deng, W. Hu, and Y. Geng, Donor-acceptor conjugated polymers based on bisisoindigo: Energy level modulation toward unipolar n-type semiconductors, Macromolecules 51(21), 8652 (2018)

    Article  ADS  Google Scholar 

  130. T. Lei, J. H. Dou, X. Y. Cao, J. Y. Wang, and J. Pei, Electron-deficient poly(p-phenylene vinylene) provides electron mobility over 1 cm2·V1·s1 under ambient conditions, J. Am. Chem. Soc. 135(33), 12168 (2013)

    Article  Google Scholar 

  131. T. Lei, X. Xia, J. Y. Wang, C. J. Liu, and J. Pei, “Conformation locked” strong electron-deficient poly(p-phenylene vinylene) derivatives for ambient-stable n-type field-effect transistors: Synthesis, properties, and effects of fluorine substitution position, J. Am. Chem. Soc. 136(5), 2135 (2014)

    Article  Google Scholar 

  132. Y. Q. Zheng, T. Lei, J. H. Dou, X. Xia, J. Y. Wang, C. J. Liu, and J. Pei, Strong electron-deficient polymers lead to high electron mobility in air and their morphology-dependent transport behaviors, Adv. Mater. 28(33), 7213 (2016)

    Article  Google Scholar 

  133. Y. Z. Dai, N. Ai, Y. Lu, Y. Q. Zheng, J. H. Dou, K. Shi, T. Lei, J. Y. Wang, and J. Pei, Embedding electron-deficient nitrogen atoms in polymer backbone towards high performance n-type polymer field-effect transistors, Chem. Sci. (Camb.) 7(9), 5753 (2016)

    Article  Google Scholar 

  134. Y. Q. Zheng, Z. F. Yao, T. Lei, J. H. Dou, C. Y. Yang, L. Zou, X. Meng, W. Ma, J. Y. Wang, and J. Pei, Unraveling the solution-state supramolecular structures of donor-acceptor polymers and their influence on solidstate morphology and charge-transport properties, Adv. Mater. 29(42), 1701072 (2017)

    Article  Google Scholar 

  135. Z. Yi, S. Wang, and Y. Liu, Design of high-mobility diketopyrrolopyrrole-based pi-conjugated copolymers for organic thin-film transistors, Adv. Mater. 27(24), 3589 (2015)

    Article  Google Scholar 

  136. B. Sun, W. Hong, Z. Yan, H. Aziz, and Y. Li, Record high electron mobility of 6.3 cm2·V1·s1 achieved for polymer semiconductors using a new building block, Adv. Mater. 26(17), 2636 (2014)

    Article  Google Scholar 

  137. Y. Gao, X. Zhang, H. Tian, J. Zhang, D. Yan, Y. Geng, and F. Wang, High mobility ambipolar diketopyrrolopyrrole-based conjugated polymer synthesized via direct arylation polycondensation, Adv. Mater. 27(42), 6753 (2015)

    Article  Google Scholar 

  138. K. Guo, J. Bai, Y. Jiang, Z. Wang, Y. Sui, Y. Deng, Y. Han, H. Tian, and Y. Geng, Diketopyrrolopyrrole-based conjugated polymers synthesized via direct arylation polycondensation for high mobility pure n-channel organic field-effect transistors, Adv. Funct. Mater. 28(31), 1801097 (2018)

    Article  Google Scholar 

  139. D. Khim, Y. R. Cheon, Y. Xu, W. T. Park, S. K. Kwon, Y. Y. Noh, and Y. H. Kim, Facile route to control the ambipolar transport in semiconducting polymers, Chem. Mater. 28(7), 2287 (2016)

    Article  Google Scholar 

  140. J. Yang, H. Wang, J. Chen, J. Huang, Y. Jiang, J. Zhang, L. Shi, Y. Sun, Z. Wei, G. Yu, Y. Guo, S. Wang, and Y. Liu, Bis-diketopyrrolopyrrole moiety as a promising building block to enable balanced ambipolar polymers for flexible transistors, Adv. Mater. 29(22), 1606162 (2017)

    Article  Google Scholar 

  141. Z. Ni, H. Wang, Q. Zhao, J. Zhang, Z. Wei, H. Dong, and W. Hu, Ambipolar conjugated polymers with ultrahigh balanced hole and electron mobility for printed organic complementary logic via a two-step ch activation strategy, Adv. Mater. 31(10), 1806010 (2019)

    Article  Google Scholar 

  142. Z. Ni, H. Wang, H. Dong, Y. Dang, Q. Zhao, X. Zhang, and W. Hu, Mesopolymer synthesis by ligand-modulated direct arylation polycondensation towards n-type and ambipolar conjugated systems, Nat. Chem. 11(3), 271 (2019)

    Article  Google Scholar 

  143. D. Shi, Z. Liu, J. Ma, Z. Zhao, L. Tan, G. Lin, J. Tian, X. Zhang, G. Zhang, and D. Zhang, Half-fused diketopyrrolopyrrole-based conjugated donor-acceptor polymer for ambipolar field-effect transistors, Adv. Funct. Mater. 30(21), 1910235 (2020)

    Article  Google Scholar 

  144. J. Yang, Z. Zhao, H. Geng, C. Cheng, J. Chen, Y. Sun, L. Shi, Y. Yi, Z. Shuai, Y. Guo, S. Wang, and Y. Liu, Isoindigo-based polymers with small effective masses for high-mobility ambipolar field-effect transistors, Adv. Mater. 29(36), 1702115 (2017)

    Article  Google Scholar 

  145. T. Takaya, M. D. Mamo, M. Karakawa, and Y. Y. Noh, Isoindigo benzodifurandione based conjugated polymers for high performance organic field-effect transistors, J. Mater. Chem. C 6(29), 7822 (2018)

    Article  Google Scholar 

  146. K. Huang, X. Zhao, Y. Du, S. Kim, X. Wang, H. Lu, K. Cho, G. Zhang, and L. Qiu, Modulating charge transport characteristics of bis-azaisoindigo-based D-A conjugated polymers through energy level regulation and side chain optimization, J. Mater. Chem. C 7(25), 7618 (2019)

    Article  Google Scholar 

  147. Y. Jiang, J. Chen, Y. Sun, Q. Li, Z. Cai, J. Li, Y. Guo, W. Hu, and Y. Liu, Fast deposition of aligning edge-on polymers for high-mobility ambipolar transistors, Adv. Mater. 31(2), 1805761 (2019)

    Article  Google Scholar 

  148. X. Zhou, N. Ai, Z. H. Guo, F. D. Zhuang, Y. S. Jiang, J. Y. Wang, and J. Pei, Balanced ambipolar organic thin-film transistors operated under ambient conditions: Role of the donor moiety in BDOPV-based conjugated copolymers, Chem. Mater. 27(5), 1815 (2015)

    Article  Google Scholar 

  149. Y. Deng, B. Sun, Y. He, J. Quinn, C. Guo, and Y. Li, (3E,8E)-3,8-Bis(2-oxoindolin-3-ylidene)naphtho-[1,2-b:5,6-b′]difuran-2,7(3H,8H)-dione (INDF) based polymers for organic thin-film transistors with highly balanced ambipolar charge transport characteristics, Chem. Commun. (Camb.) 51(70), 13515 (2015)

    Article  Google Scholar 

  150. H. Luo, C. Yu, Z. Liu, G. Zhang, H. Geng, Y. Yi, K. Broch, Y. Hu, A. Sadhanala, L. Jiang, P. Qi, Z. Cai, H. Sirringhaus, and D. Zhang, Remarkable enhancement of charge carrier mobility of conjugated polymer field-effect transistors upon incorporating an ionic additive, Sci. Adv. 2(5), e1600076 (2016)

    Article  ADS  Google Scholar 

  151. M. Kang, J. Yeo, W. Park, N. Kim, D. Lim, H. Hwang, K. Baeg, Y. Noh, and D. Kim, Favorable molecular orientation enhancement in semiconducting polymer assisted by conjugated organic small molecules, Adv. Funct. Mater. 26(46), 8527 (2016)

    Article  Google Scholar 

  152. K. Wasapinyokul, T. Panjasamanwong, W. Ponkasemsuk, C. Sriprachuabwong, and T. Lomas, Mathematical model for thickness of off-center spin-coated polymer films, J. Appl. Polym. Sci. 137(6), 48356 (2020)

    Article  Google Scholar 

  153. H. Wang, L. Chen, R. Xing, J. Liu, and Y. Han, Simultaneous control over both molecular order and long-range alignment in films of the donor-acceptor copolymer, Langmuir 31(1), 469 (2015)

    Article  Google Scholar 

  154. A. Li, D. Bilby, B. X. Dong, J. Amonoo, J. Kim, and P. F. Green, Macroscopic alignment of poly(3-hexylthiophene) for enhanced long-range collection of photogenerated carriers, J. Polym. Sci. B 54(2), 180 (2016)

    Article  Google Scholar 

  155. S. Wang, A. Kiersnowski, W. Pisula, and K. Mullen, Microstructure evolution and device performance in solution-processed polymeric field-effect transistors: The key role of the first monolayer, J. Am. Chem. Soc. 134(9), 4015 (2012)

    Article  Google Scholar 

  156. S. Wang, W. Pisula, and K. Müllen, Nanofiber growth and alignment in solution processed n-type naphthalene-diimide-based polymeric field-effect transistors, J. Mater. Chem. 22(47), 24827 (2012)

    Article  Google Scholar 

  157. X. Gu, L. Shaw, K. Gu, M. F. Toney, and Z. Bao, The meniscus-guided deposition of semiconducting polymers, Nat. Commun. 9(1), 534 (2018)

    Article  ADS  Google Scholar 

  158. G. Qu, J. J. Kwok, and Y. Diao, Flow-directed crystallization for printed electronics, Acc. Chem. Res. 49(12), 2756 (2016)

    Article  Google Scholar 

  159. Z. Zhao, H. Liu, Y. Zhao, C. Cheng, J. Zhao, Q. Tang, G. Zhang, and Y. Liu, Anisotropic charge-carrier transport in high-mobility donor-acceptor conjugated polymer semiconductor films, Chem. Asian J. 11(19), 2725 (2016)

    Article  Google Scholar 

  160. G. Wang, W. Huang, N. D. Eastham, S. Fabiano, E. F. Manley, L. Zeng, B. Wang, X. Zhang, Z. Chen, R. Li, R. P. H. Chang, L. X. Chen, M. J. Bedzyk, F. S. Melkonyan, A. Facchetti, and T. J. Marks, Aggregation control in natural brush-printed conjugated polymer films and implications for enhancing charge transport, Proc. Natl. Acad. Sci. USA 114(47), E10066 (2017)

    Article  Google Scholar 

  161. F. Ge, Z. Liu, S. B. Lee, X. Wang, G. Zhang, H. Lu, K. Cho, and L. Qiu, Bar-coated ultrathin semiconductors from polymer blend for one-step organic field-effect transistors, ACS Appl. Mater. Interfaces 10(25), 21510 (2018)

    Article  Google Scholar 

  162. B. J. Worfolk, S. C. Andrews, S. Park, J. Reinspach, N. Liu, M. F. Toney, S. C. Mannsfeld, and Z. Bao, Ultrahigh electrical conductivity in solution-sheared polymeric transparent films, Proc. Natl. Acad. Sci. USA 112(46), 14138 (2015)

    Article  ADS  Google Scholar 

  163. J. Liu, M. Arif, J. Zou, S. I. Khondaker, and L. Zhai, Controlling poly(3-hexylthiophene) crystal dimension: nanowhiskers and nanoribbons, Macromolecules 42(24), 9390 (2009)

    Article  ADS  Google Scholar 

  164. D. H. Kim, J. T. Han, Y. D. Park, Y. Jang, J. H. Cho, M. Hwang, and K. Cho, Single-crystal polythiophene microwires grown by self-assembly, Adv. Mater. 18(6), 719 (2006)

    Article  Google Scholar 

  165. H. A. Um, D. H. Lee, D. U. Heo, D. S. Yang, J. Shin, H. Baik, M. J. Cho, and D. H. Choi, High aspect ratio conjugated polymer nanowires for high performance field-effect transistors and phototransistors, ACS Nano 9(5), 5264 (2015)

    Article  Google Scholar 

  166. X. Xiao, Z. Hu, Z. Wang, and T. He, Study on the single crystals of poly(3-octylthiophene) induced by solvent-vapor annealing, J. Phys. Chem. B 113(44), 14604 (2009)

    Article  Google Scholar 

  167. X. Xiao, Z. Wang, Z. Hu, and T. He, Single crystals of polythiophene with different molecular conformations obtained by tetrahydrofuran vapor annealing and controlling solvent evaporation, J. Phys. Chem. B 114(22), 7452 (2010)

    Article  Google Scholar 

  168. H. Wang, J. Liu, Y. Xu, and Y. Han, Fibrillar morphology of derivatives of poly(3-alkylthiophene)s by solvent vapor annealing: Effects of conformational transition and conjugate length, J. Phys. Chem. B 117(19), 5996 (2013)

    Article  Google Scholar 

  169. X. Li, P. J. Wolanin, L. R. MacFarlane, R. L. Harniman, J. Qian, O. E. C. Gould, T. G. Dane, J. Rudin, M. J. Cryan, T. Schmaltz, H. Frauenrath, M. A. Winnik, C. F. J. Faul, and I. Manners, Uniform electroactive fibre-like micelle nanowires for organic electronics, Nat. Commun. 8(1), 1 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21602113 and 61774087), 1311 Research Foundation of Nanjing University of Posts & Telecommunications and Jiangsu Specially Appointed Professor Foundation. QZ thanks the financial support from City University of Hong Hong, State Key Laboratory of Supramolecular Structure and Materials, Jilin University (No. sklssm2020041).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Zhang or Qichun Zhang.

Additional information

arXiv: 2102.03475. This article can also be found at http://journal.hep.com.cn/fop/EN/10.1007/s11467-020-1045-6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, L., Huang, W., Yang, C. et al. Recent advances on π-conjugated polymers as active elements in high performance organic field-effect transistors. Front. Phys. 16, 33500 (2021). https://doi.org/10.1007/s11467-020-1045-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-020-1045-6

Keywords

Navigation