Skip to main content

Advertisement

Log in

Potential of ornamental monocot plants for rhizofiltration of cadmium and zinc in hydroponic systems

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Cadmium (Cd) and zinc (Zn) accumulation and uptake ability have been investigated in three ornamental monocot plants (Heliconia psittacorum x H. spathocircinata, Echinodorus cordifolius, and Pontederia cordata) grown in hydroponic systems. All study plants in the highest heavy metal treatments were found to be excluders for Cd and Zn with translocation factor values < 1 and bioconcentration factor (BCF) values > 100. The highest Cd and Zn accumulations were found in roots of E. cordifolius (4766.6 mg Zn kg-1 and 6141.6 mg Cd kg-1), followed by H. psittacorum x H. spathocircinata (4313.5 mg Zn kg-1) and P. cordata (3673.3 mg Cd kg-1), respectively, whereas shoots had lower performances. However, P. cordata had the lowest dry biomass production compared to the other two plant species in this study. As a result of dilution effects, heavy metal accumulation for all study plants was lower in the combined heavy metal treatments than in solely Cd and Zn only treatments. At the end of experiments, the highest uptakes of Cd and Zn were found in H. psittacorum x H. spathocircinata (62.1% Zn2+ from 10 mg Zn L-1 solution) and E. cordifolius (27.3% Cd2+ from 2 mg Cd L-1 solution). Low percentage metal uptakes were found in P. cordata; therefore, E. cordifolius and H. psittacorum x H. spathocircinata are clearly better suited for removing Cd and/or Zn from contaminated waters and hydroponic systems.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The authors can confirm that all relevant data are included in the article and its supplementary information files.

References

  • Aini Syuhaida AW, Norkhadijah SIS, Praveena SM, Suriyani A (2014) The comparison of phytoremediation abilities of water mimosa and water hyacinth. ARPN J Sci Technol 4:722–731

    Google Scholar 

  • Ali S, Abbas Z, Rizwan M, Zaheer IE, Yavaş I, Ünay A, Abdel-DAIM MM, Bin-Jumah M, Hasanuzzaman M, Kalderis D (2020) Application of floating aquatic plants in phytoremediation of heavy metals polluted water: a review. Sustainability 12:1927. https://doi.org/10.3390/su12051927

    Article  CAS  Google Scholar 

  • Andresen E, Küpper H (2012) Cadmium toxicity in plants. In: Sigel A, Sigel H, Sigel R (eds) Cadmium: from toxicity to essentiality. Metal Ions in Life Sciences, vol 11. Springer, Dordrecht, pp 395–413

    Google Scholar 

  • APHA, AWWA and WEF (American Public Health Association, American Water Works Association and Water Environment Federation) (2005) Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, DC

    Google Scholar 

  • ATSDR (Agency for Toxic Substances and Disease Registry) (2012) Toxicological Profile for Cadmium. Agency for Toxic Substances and Disease Registry, Atlanta

    Google Scholar 

  • ATSDR (Agency for Toxic Substances and Disease Registry), 2020. ATSDR’s Substance Priority List. http://atsdr.cdc.gov/spl/index.html#2019spl, Accessed: 5 May 2020

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which accumulate metallic elements-a review of their distribution ecology and phytochemistry. Biorecovery 1:81–12

    CAS  Google Scholar 

  • Berti WR, Cunningham SD (2000) Phytostabilization of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean-up the environment. John Wiley & Sons, Inc., New York, pp 71–88

    Google Scholar 

  • Blum WH (1997) Cadmium uptake by higher plants. Paper presented at the proceedings from the fourth international conference on the biogeochemistry of trace elements. University of California, Berkeley

    Google Scholar 

  • Boularbah A, Schwartz C, Bitton G, Aboudrar W, Ouhammou A, Morel JL (2006) Heavy metal contamination from mining sites in South Morocco: 2. Assessment of metal accumulation and toxicity in plants. Chemosphere 63(5):811–817

    Article  CAS  Google Scholar 

  • Cabot C, Martos S, Llugany M, Gallego B, Tolrà R, Poschenrieder C (2019) A role for zinc in plant defense against pathogens and herbivores. Front. Plant Sci 10:Article 1171. https://doi.org/10.3389/fpls.2019.01171

    Article  Google Scholar 

  • Cakmak I (2008) Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant Soil 302:1–17

    Article  CAS  Google Scholar 

  • Cakmak I, Yilmaz A, Ekiz H, Torun B, Erenoglu B, Braun HJ (1996) Zinc deficiency a critical nutritional problem in wheat production in central Anatolia. Plant Soil 180:165–172

    Article  CAS  Google Scholar 

  • Chaney RL (1989) Toxic element accumulation in soils and crops: protecting soil fertility and agricultural food-chains. Springer, Berlin

    Google Scholar 

  • Chaney RL (1993) Zinc phytotoxicity. In: Robson AD (ed) Zinc in soils and plants. Developments in plant and soil sciences, vol 55. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0878-2_10

    Chapter  Google Scholar 

  • Chaudhry TM, Hayes WJ, Khan AG, Khoo CS (1998) Phytoremediation-focusing on accumulator plants that remediate metal-contaminated soils. Aust J Ecotoxicol 4:37–51

    CAS  Google Scholar 

  • Chayapan P, Kruatrachue M, Meetam M, Pokethitiyook P (2015) Phytoremediation potential of Cd and Zn wetland plants, Colocasia esculenta L. Schott., Cyperus malaccensis Lam., and Typha angustifolia L. grown in hydroponics. J Environ Biol 36:1179–1183

    CAS  Google Scholar 

  • Clay L, Pichtel J (2019) Treatment of simulated oil and gas produced water via pilot-scale rhizofiltration and constructed wetlands. Int J Environ Res 13:185–198

    Article  CAS  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719

    Article  CAS  Google Scholar 

  • Codex Alimentarious Commission (1984) Contaminants, Joint FAO/WHO Food standards Program (Vol. XVII, 1st ed.). Codex Alimentarious, Geneva

    Google Scholar 

  • Davies BE (1993) Radish as an indicator plant for derelict land – uptake of zinc at toxic concentrations. Commun Soil Sci Plant Anal 24:1883–1895

    Article  CAS  Google Scholar 

  • Duarte A, Canais-Seco T, Peres J, Bentes I, Pinto J (2010) Sustainability indicators of subsurface flow constructed wetlands in Portuguese small communities. WSEAS Trans Environ Dev 9:625–634

    Google Scholar 

  • Dushenkov V, Nanda Kumar PBA, Motto H, Raskin I (1995) Rhizofiltration: the use of plants to remove heavy metals from aqueous streams. Environ Sci Technol 29:1239–1245

    Article  CAS  Google Scholar 

  • Engwa GA, Ferdinard PU, Nwalo FN, Unachukwu MN (2019) Mechanism and health effects of heavy metal toxicity in humans. In: Karciolgu O (ed) Poisoning Model World New Tricks an Old Dog? IntechOpen, London. https://doi.org/10.5772/intechopen.82511

    Chapter  Google Scholar 

  • Fritioff Å, Greger M (2003) Aquatic and terrestrial plant species with potential to remove heavy metals from stormwater. Int J Phytoremediat 5(3):211–224

    Article  CAS  Google Scholar 

  • Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Zawoznik MS, Groppa MD, Benavides MP (2012) Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33–46

    Article  CAS  Google Scholar 

  • Gonzaga MS, Santos JAG, Ma LQ (2006) Arsenic chemistry in the rhizosphere of Pteris vittata L. and Nephrolepis exaltata L. Environ Pollut 143:254–260

    Article  CAS  Google Scholar 

  • Guan BTH, Mohamat-Yusuff F, Halimoon N, Yong CSY (2017) Uptake of Mn and Cd wild water spinach and their bioaccumulation and translocation factors. Environ Asia 10(1):44–51

    Google Scholar 

  • Hasan SNMS, Kusin FMM, Lee ALS, Ukang TA, Yusuff FM, Ibrahim ZZ (2017) Performance of vetiver grass (Vetiver zizanioides) for phytoremediation of contaminated water. MATEC Web of Conference 103:06003. https://doi.org/10.1051/metecconf/20170306003

    Article  Google Scholar 

  • Hassan MU, Aamer M, Chattha MU, Haiying T, Shahzad B, Barbanti L, Nawaz M, Rasheed A, Afzal A, Liu Y, Guoqin H (2020) The critical role of zinc in plants facing the drought stress. Agriculture 10:0396. https://doi.org/10.3390/agriculture10090396

    Article  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Expt Stn Circ 347:1–32

    Google Scholar 

  • Islam M, Ueno Y, Sikder M, Kurasaki M (2013) Phytofiltration of arsenic and cadmium from the water environment using Micranthemum umbrosum (J.F. Gmel) S.F. Blake as a hyperaccumulator. Int J Phytoremediat 15:1010–1021

    Article  CAS  Google Scholar 

  • Ismael MA, Elyamine AM, Moussa MG, Cai M, Zhao X, Hu C (2019) Cadmium in plants: uptake, toxicity, and its interactions with selenium fertilizers. Metallomics 11:255–277

    Article  CAS  Google Scholar 

  • January MC, Cutright TJ, Keulen HV, Wei R (2008) Hydroponic phytoremediation of Cd, Cr, Ni, As, and Fe: can Helianthus annuus hyperaccumulate multiple heavy metals? Chemosphere 70:531–537

    Article  CAS  Google Scholar 

  • Jian-pan X, Wen-ming L, Ru-nan T (2018) Effects of Cd on antioxidant enzyme activities, and leaf photosynthetic and fluorescence characteristics in Pontederia cordata. Acta Pratacul Sin 27(10):23–34

    Google Scholar 

  • John R, Ahmad P, Gadgil K, Sharma S (2012) Heavy metal toxicity: effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L. Int J Plant Prod 3:65–76

    Google Scholar 

  • Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants. CRC Press, Boca Raton

    Google Scholar 

  • Kaewtubtim P, Meeinkuirt W, Seepom S, Pichtel J (2018) Phytomanagement of radionuclides and heavy metals in mangrove sediments of Pattani Bay, Thailand using Avicennia marina and Pluchea indica. Mar Pollut Bull 127:320–333

    Article  CAS  Google Scholar 

  • Khan AG, Kuel C, Chaudhry TM, Khoo CS, Hayes WJ (2000) Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41:197–207

    Article  CAS  Google Scholar 

  • King JC, Cousins RJ (2006) Zinc. In: Shils ME, Shike M, Ross AC, Caballero B, Cousins RJ (eds) Modern Nutrition in Health and Disease, 10th edn. Lippincott Williams and Wilkins, Baltimore, pp 271–285

    Google Scholar 

  • Kinraide TB, Poschenrieder C, Kopittke PM (2011) The standard electrode potential (Eθ) predicts the prooxidant activity and the acute toxicity of metal ions. J Inorg Biochem 105:1438–1445

    Article  CAS  Google Scholar 

  • Koller M, Saleh HM (2018) Introductory chapter: introducing heavy metals. In: Saleh HM, Aglan RF (eds) Heavy Metals. IntechOpen, London. https://doi.org/10.5772/intechopen.74783

    Chapter  Google Scholar 

  • Kováčik J, Babula P, Hedbavny J (2017) Comparison of vascular and non-vascular aquatic plant as indicators of cadmium toxicity. Chemosphere 180:86–92

    Article  CAS  Google Scholar 

  • Lasat MM (2002) Phytoextraction of toxic metals. J Environ Qual 31(1):109–120

    CAS  Google Scholar 

  • Liu WX, Liu JW, Wu MZ, Li Y, Zhao Y, Li SR (2009) Accumulation and translocation of toxic heavy metals in winter wheat (Triticum aestivum L.) growing in agricultural soil of Zhengzhou, China. Bull Environ Contam Toxicol 82(3):343–347

    Article  CAS  Google Scholar 

  • Madera-Parra CA, Peña-Salamanca EJ, Peña MR (2015) Phytoremediation of landfill leachate with Colocasia esculenta, Gynerum sagittatum and Heliconia psittacorum in constructed wetlands. Int J Phytoremediat 17:16–24

    Article  CAS  Google Scholar 

  • Manzatu C, Árpád C, Tonk S, Majdik K (2012) Heavy metals phytoaccumulation by aquatic plants (Cabomba aquatica, Vallisneria spiralis, Echinodorus cordifolius). International Conference on Chemistry. Félixfürdő, Hungarian Technical Scientific Society of Transylvania, Hungary

  • Meeinkuirt W, Kruatrachue M, Tanhan P, Chaiyarat R, Poketthitiyook P (2013) Phytostabilization potential of Pb mine tailings by two grass species, Thysanolaena maxima and Vetiveria zizanioides. Water Air Soil Pollut 224:1750

    Article  CAS  Google Scholar 

  • Moore MT, Kröger R (2010) Evaluating plant species-specific contributions to nutrient mitigation in drainage ditch mesocosm. Water Air Soil Pollut 217:445–454

    Article  CAS  Google Scholar 

  • Mwamba TM, Ali S, Ali B, Lwalaba JL, Liu H, Farooq MA, Shou J, Zhou W (2016) Intensive effects of cadmium and copper on metal accumulation, oxidative stress, and mineral composition in Brassica napus. Int J Environ Sci Technol 13:2163–2174

    Article  CAS  Google Scholar 

  • Nanda AK, Wissuwa M (2016) Rapid crown root development confers tolerance to zinc deficiency in rice. Front Plant Sci 7:428. https://doi.org/10.3389/fpls.2016.00428

    Article  Google Scholar 

  • Nandakumar PBA, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238

    Article  Google Scholar 

  • Obinna IB, Ebere EC (2019) Phytoremediation of polluted waterbodies with aquatic plants: recent progress on heavy metal and organic pollutants. Anal Methods Environ Chem. https://doi.org/10.20944/preprints201909.0020.v1

  • Odjegba VJ, Fasidi IO (2004) Accumulation of trace element by Pistia stratoites: implications for phytoremediation. Ecotoxicol. 13:637–646

    Article  CAS  Google Scholar 

  • Orejuela J, González JC, Lindao V, Santillán L, Godoy S (2018) Evaluation of the efficacy of Heliconia psittacorum (heliconiaceae) cultivated hydroponically for phytoremediation of water with chromium (VI) presence. AIP Confer Proc. https://doi.org/10.1063/1.5050631

  • Phusantisampan T, Meeinkuirt W, Saengwilai P, Pichtel J, Chaiyarat R (2016) Phytostabilization potential of Pb mine tailings by two grass species, Thysanolaena maxima and Vetiveria zizanioides. Environ Sci Pollut Res 23(19):20027–20038

    Article  CAS  Google Scholar 

  • Pratas J, Prasad MNV, Freitas H, Conde L (2005) Plants growing in abandoned mines of Portugal are useful for biogeochemical exploration of arsenic, antimony, tungsten and mine reclamation. J Geochem Explor 85:99–107

    Article  CAS  Google Scholar 

  • Prum C, Dolphen R, Thiravetyan P (2018) Enhancing arsenic removal from arsenic-contaminated water by Echinodorus cordifolius− endophytic Arthrobacter creatinolyticus interactions. J Hazard Mater 213:11–19

    CAS  Google Scholar 

  • R Development Core Team (2012) R: A language and environment for statistical computing. R foundation for statistical computing, Vienna

  • Renu Agarwal M, Singh K (2017) Methodologies for removal of heavy metal ions from wastewater: an overview. Interdiscip Environ Rev 18(2):124–142

    Article  Google Scholar 

  • Saengwilai P, Meeinkuirt W, Pichtel J, Phusantisampan T (2017) Influence of amendments on Cd and Zn uptake and accumulation in rice (Oryza sativa L.) in contaminated soil. Environ Sci Pollut Res 24(18):15756–15767

    Article  CAS  Google Scholar 

  • Sandoval L, Zamora-Castro SA, Vidal-Álvarez M, Marín-Muñiz JL (2019) Role of wetland plants and use of ornamental flowering plants in constructed wetlands for wastewater treatment: a review. Appl Sci 9:685. https://doi.org/10.3390/app9040685

    Article  CAS  Google Scholar 

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753

    Article  CAS  Google Scholar 

  • Sharma S, Singh B, Manchanda VK (2015) Phytoremediation: role of terrestrial and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. Environ Sci Pollut Res 22:946–962

    Article  CAS  Google Scholar 

  • Sheirdil RA, Bashir K, Hayat R, Akhtar MS (2012) Effect of cadmium on soybean (Glysine max L.) growth and nitrogen fixation. Afr J Biotechnol 11(8):1886–1891

    CAS  Google Scholar 

  • Speichert G, Speichert S (2004) Encyclopedia of Water Garden Plants. Timber Press, Oregon

    Google Scholar 

  • Sricoth T, Meeinkuirt W, Pichtel J, Taeprayoon P, Saengwilai P (2018a) Synergistic phytoremediation of wastewater by two aquatic plants (Typha angustifolia and Eichhornia crassipes) and potential as biomass fuel. Environ Sci Pollut Res 25(6):5344–5358

    Article  CAS  Google Scholar 

  • Sricoth T, Meeinkuirt W, Saengwilai P, Pichtel J, Taeprayoon P (2018b) Aquatic plant for phytostabilization of cadmium and zinc in hydroponic experiments. Environ Sci Pollut Res 25(15):14964–14976

    Article  CAS  Google Scholar 

  • Sriprapat W, Kullavanijaya S, Techkarnjanaruk S, Thiravetyan P (2011) Diethylene glycol removal by Echinodorus cordifolius (L.): the role of plant-microbe interactions. J Hazard Mater 185:1066–1072

    Article  CAS  Google Scholar 

  • Sun H, Wang Z, Gao P, Liu P (2013) Selection of aquatic plants for phytoremediation of heavy metal in electroplate wastewater. Acta Physiol Plant 35:355–364

    Article  CAS  Google Scholar 

  • Tanhan P, Kruatrachue M, Pokethitiyook P, Chaiyarat P (2007) Uptake and accumulation of cadmium, lead and zinc by Siam weed [Chromolaena odorata (L.) King & Robinson]. Chemosphere 68:323–329

    Article  CAS  Google Scholar 

  • Teamkao P, Thriravetyan P (2015) Phytoremediation of mono-, di-, and triethylene glycol by Echinodorus cordifolius L. Griseb. Int J Phytoremediat 17:93–100

    Article  CAS  Google Scholar 

  • Török A, Gulyás Z, Szalai G, Kocsy G, Majdik C (2015) Phytoremediation capacity of aquatic plants is associated with the degree of phytochelatin polymerization. J Hazard Mater 299:371–378

    Article  CAS  Google Scholar 

  • Verma P, George KV, Singh HV, Singh SK, Juwarkar A, Singh RN (2006) Modeling rhizofiltration: heavy-metal uptake by plant roots. Environ Model Assess 11:387–394

    Article  Google Scholar 

  • Wang SL, Liao WB, Yu FQ, Liao B, Shu WS (2009) Hyperaccumulation of lead, zinc, and cadmium in plants growing on a lead/zinc outcrop in Yunnan Province, China. Environ Geol 58:471–476

    Article  CAS  Google Scholar 

  • Wani RA, Ganai BA, Shah MA, Uqab B (2017) Heavy metal uptake potential of aquatic plants through phytoremediation technique—a review. J Bioremediat Biodegrad 8:4. https://doi.org/10.4172/2155-6199.1000404

    Article  CAS  Google Scholar 

  • WSDE (Washington State Department of Ecology) (2006) Native plants for aquatic gardens and aquarium. http://www.ecy.wa.gov/biblio/0603004.html. Accessed 4 Mar 2021

  • Xiong J, Lu H, Lu K, Duan Y, An L, Zhu C (2009) Cadmium decreases crown root number by decreasing endogenous nitric oxide, which is indispensable for crown root primordia initiation in rice seedlings. Planta 230:599–610

    Article  CAS  Google Scholar 

  • Zhang CB, Liu WL, Wang J, Ge Y, Ge Y, Chang SX, Chang J (2011) Effects of monocot and dicot types and species richness in mesocosm constructed wetlands on removal of pollutants from wastewater. Bioresour Technol 102(22):10260–10265

    Article  CAS  Google Scholar 

  • Zhao S, Duo L (2015) Bioaccumulation of cadmium, copper, zinc, and nickel by weed species from municipal solid waste compost. Pol J Environ Stud 24(1):413–417

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was funded by Mahidol University. We thank Mr. Julian Pieniazek for editing the English language content of this document.

Author information

Authors and Affiliations

Authors

Contributions

Sasimar Woraharn: Literature review, design of the research outline, design of research tools, investigation, analysis of data, interpretation of data analysis, drafting of the article (first draft).

Weeradej Meeinkuirt: Conception of the project, literature review, design of the research outline, design of research tools, investigation, decision on data analysis method, analysis of data, interpretation of data analysis, drafting of the article (first draft), revising draft of the article (second draft), final approval of the article (final draft).

Theerawut Phusantisampan: Conception of the project, design of the research outline, design of research tools, investigation, analysis of data.

Piyathap Avakul: Conception of the project, design of the research outline, design of research tools, investigation, analysis of data.

Corresponding author

Correspondence to Weeradej Meeinkuirt.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

The authors have agreed to submit it in its current form for consideration for publication in the journal.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Elena Maestri

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

Echinodorus cordifolius and Heliconia psittacorum x H. spathocircinata can be classified as Cd and Zn excluders given that most of their accumulated heavy metal content resided in the roots.

• Plants cultivated in the mixed Cd/Zn hydroponic solution manifested lower levels of accumulation and this may due to dilution effects that might account for reduced phytotoxicity.

• Ornamental monocot plants are considered suitable for rhizofiltration using hydroponically cultivated plant roots to remediate contaminated waters.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woraharn, S., Meeinkuirt, W., Phusantisampan, T. et al. Potential of ornamental monocot plants for rhizofiltration of cadmium and zinc in hydroponic systems. Environ Sci Pollut Res 28, 35157–35170 (2021). https://doi.org/10.1007/s11356-021-13151-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-13151-x

Keywords

Navigation