Skip to main content
Log in

Hydrogenation effects on the thermal and magnetic properties of mono- and bilayer graphene

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

In the present study, the nearest-neighbor tight-binding model has been employed to calculate the density of states (DOS), electronic heat capacity (EHC), and Pauli magnetic susceptibility (PMS) of hydrogenated systems, namely monolayer graphone and graphane, bilayer graphone–graphene, and bilayer graphane–graphene. Then, the results have been compared with that of monolayer and simple bilayer graphene. It was found that the behaviors of hydrogenated systems differ from those of monolayer and bilayer graphene near the Fermi Level. Also, monolayer graphone and bilayer graphone–graphene exhibit a high peak near the Fermi level. Graphane monolayer, on the other hand, has no states around the Fermi level. Furthermore, bilayer graphane–graphone, similar to graphene, is a semimetal. Also, Schottky anomaly peaks in the EHC curves and crossovers in the PMS curves can be observed, which have divided the domain into two regions of low and high temperature. Compared to hydrogenated systems, the Schottky anomaly in graphene monolayer and bilayer graphene occurred at lower temperatures, while the PMS of monolayer graphone and bilayer graphone–graphene were faster than other systems in reaching the crossover. From the theoretical standpoint, these phenomena are due to the proportional relation of the PMS and EHC with the DOS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200

    Article  CAS  Google Scholar 

  2. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  3. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109

    Article  CAS  Google Scholar 

  4. Soldano C, Mahmood A, Dujardin E (2010) Production, properties and potential of graphene. Carbon 48:2127–2150

    Article  CAS  Google Scholar 

  5. Angel J, Guillen S, Guinea F (2020) Electron heating and mechanical properties of graphene. Phys Rev B 101:060102

    Article  Google Scholar 

  6. Boukhvalov DW, Katsnelson MI (2009) Chemical functionalization of graphene. J Phys Condens Matter 21:344205

    Article  CAS  Google Scholar 

  7. Sevincli H, Sevik C, Cagin T, Cuniberti G (2013) A bottom-up route to enhance thermoelectric figures of merit in graphene nanoribbons. Sci Rep 3:1–6

    Google Scholar 

  8. Wakabayashi K, Sasaki KI, Nakanishi T, Enoki T (2010) Electronic states of graphene nanoribbons and analytical solutions. Sci Technol Adv Mater 11:054504

    Article  CAS  Google Scholar 

  9. Elias DC, Nair RR, Mohiuddin TMG, Morozov SV, Blake P, Halsall MP, Ferrari AC, Boukhvalov DW, Katsnelson MI, Geim AK, Novoselov KS (2009) Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science 323:610–613

    Article  CAS  Google Scholar 

  10. Shih PH, Do TN, Gumbs G, Lin MF (2020) Electronic and optical properties of doped graphene. Phys E 118:113894

    Article  CAS  Google Scholar 

  11. Mousavi H, Khodadadi J, Grabowski M (2017) Semiconducting behavior of substitutionally doped bilayer graphene. Phys B 530:90–94

    Article  CAS  Google Scholar 

  12. Zhou J, Wang Q, Sun Q, Chen XS, Kawazoe Y, Jena P (2009) Ferromagnetism in semihydrogenated graphene sheet. Nano Lett 9:3867–3870

    Article  CAS  Google Scholar 

  13. Wu M, Burton JD, Tsymbal EY, Zeng XC, Jena P (2013) Hydroxyl-decorated graphene systems as candidates for organic metal-free ferroelectrics, multiferroics, and high-performance proton battery cathode materials. Phys Rev B 87:081406

    Article  CAS  Google Scholar 

  14. Sofo JO, Chaudhari AS, Barber GD (2007) Graphane: a two-dimensional hydrocarbon. Phys Rev B 75:153401

    Article  CAS  Google Scholar 

  15. Zhou J, Sun Q (2012) How to fabricate a semihydrogenated graphene sheet? A promising strategy explored. Appl Phys Lett 101:073114

    Article  CAS  Google Scholar 

  16. Costamagna S, Neek-Amal M, Los JH, Peeters FM (2012) Thermal rippling behavior of graphane. Phys Rev B 86:041408

    Article  CAS  Google Scholar 

  17. Leenaerts O, Partoens B, Peeters FM (2009) Hydrogenation of bilayer graphene and the formation of bilayer graphane from first principles. Phys Rev B 80:245422

    Article  CAS  Google Scholar 

  18. Schwierz F (2010) Graphene transistors. Nat Nanotech 5:487

    Article  CAS  Google Scholar 

  19. Brumfiel G (2009) Graphene gets ready for the big time. Nature 458:390–391

    Article  CAS  Google Scholar 

  20. Balog R, Jorgensen B, Nilsson L, Andersen M, Rienks E, Bianchi M, Fanetti M, Lagsgaard E, Baraldi A, Lizzit S, Sljivancanin Z (2010) Bandgap opening in graphene induced by patterned hydrogen adsorption. Nat mater 9:315–319

    Article  CAS  Google Scholar 

  21. Haberer DVVD, Vyalikh DV, Taioli S, Dora B, Farjam M, Fink J, Marchenko D, Pichler T, Ziegler K, Simonucci S, Dresselhaus MS (2010) Tunable band gap in hydrogenated quasi-free-standing graphene. Nano Lett 10:3360–3366

    Article  CAS  Google Scholar 

  22. Kharche N, Nayak SK (2011) Quasiparticle band gap engineering of graphene and graphone on hexagonal boron nitride substrate. Nano Lett 11:5274–5278

    Article  CAS  Google Scholar 

  23. Xie L, Wang X, Lu J, Ni Z, Luo Z, Mao H, Wang R, Wang Y, Huang H, Qi D, Liu R, Yu T, Shen Z, Wu T, Peng H, Özyilmaz B, Loh K, Wee ATS, Ariando Chen W (2011) Room temperature ferromagnetism in partially hydrogenated epitaxial graphene. Appl Phys Lett 98:1931139

    Article  Google Scholar 

  24. Feng L, Zhang WX (2012) The structure and magnetism of graphone. AIP Adv 2:042138

    Article  CAS  Google Scholar 

  25. Boukhvalov DW (2010) Stable antiferromagnetic graphone. Phys E 43:199–201

    Article  CAS  Google Scholar 

  26. Gmitra M, Kochan D, Fabian J (2013) Spin-orbit coupling in hydrogenated graphene. Phys Rev Lett 110:246602

    Article  CAS  Google Scholar 

  27. Pujari BS, Gusarov S, Brett M, Kovalenko A (2011) Single-side-hydrogenated graphene: Density functional theory predictions. Phys Rev B 84:041402

    Article  CAS  Google Scholar 

  28. Podlivaev AI, Openov LA (2011) On the thermal stability of graphone. Semiconductors 45:958–961

    Article  CAS  Google Scholar 

  29. Kaxiras E (2003) Atomic and electronic structure of solids. Cambridge University Press, Cambridge

    Book  Google Scholar 

  30. Ashcroft WN, Mermin ND (1976) Solid state physics. Harcout college Publishers, New York

    Google Scholar 

  31. Grosso G, Parravicini GP (2000) Solid state physics. Academic Press, New York

    Google Scholar 

  32. Mousavi H, Jalilvand S, Kurdestany JM, Grabowski M (2017) Electron doping effects on the electrical conductivity of zigzag carbon nanotubes and corresponding unzipped armchair graphene nanoribbons. Phys E 94:87–91

    Article  CAS  Google Scholar 

  33. Mousavi H, Khodadadi J (2015) Graphene to graphane: two-band approach. Superlattice Microst 88:434–441

    Article  CAS  Google Scholar 

  34. Kittel C (2004) Introduction to solid state physics, 8th edn. Wiley, New York

    Google Scholar 

  35. Mousavi H, Khodadadi J, Grabowski M (2015) Electronic properties of long DNA nanowires in dry and wet conditions. Solid State Commun 222:42–48

    Article  CAS  Google Scholar 

  36. Nolting W, Ramakanth A (2009) Quantum theory of magnetism. Springer, New York

    Book  Google Scholar 

  37. Mousavi H, Jalilvand S (2019) Electrical and thermal conductivities of few-layer armchair graphene nanoribbons. Euro Phys J B 92:1–11

    Article  CAS  Google Scholar 

  38. Mousavi H, Jalilvand S, Mirzaei F (2019) Magnetic and thermal characteristics of armchair graphene nanoribbons in the two-band Harrison model. J Magn Magn Mater 469:405–410

    Article  CAS  Google Scholar 

  39. Sohrabi Sani S, Mousavi H, Asshabi M, Jalilvand S (2020) Electronic properties of graphyne and graphdiyne in tight-binding model. ECS J Solid State Sci Tech 9:031003

    Article  Google Scholar 

  40. Mousavi H, Khodadadi J, Kurdestany JM, Yarmohammadi Z (2016) Electrical and thermal conductivities of the graphene, boron nitride and silicon boron honeycomb monolayers. Phys Lett A 380:3823–3827

    Article  CAS  Google Scholar 

  41. Mousavi H, Jalilvand S, Kurdestany JM (2016) Pauli magnetic susceptibility of bilayer graphene and hexagonal boron-nitride. Phys B 502:132–139

    Article  CAS  Google Scholar 

  42. Jalilvand S, Mousavi H (2020) Multi-band tight-binding model of \({\rm MoS}_{2}\) monolayer. J Elec Mater 49:3599–3608

    Article  CAS  Google Scholar 

  43. Bruus H, Flensberg K (2004) Many-body quantum theory in condensed matter physics: an introduction. Oxford University Press, Oxford

    Google Scholar 

  44. Karlicky F, Zboril R, Otyepka M (2012) Band gaps and structural properties of graphene halides and their derivates: a hybrid functional study with localized orbital basis sets. J Chem Phys 137:034709

    Article  CAS  Google Scholar 

  45. Karlicky F, Otyepka M (2013) Band gaps and optical spectra of chlorographene, fluorographene and graphane from \({\rm G}_{0}{\rm W}_{0}\), \({\rm GW}_{0}\) and GW calculations on top of PBE and HSE06 orbitals. J Chem Theory Comput 9:4155–4164

    Article  CAS  Google Scholar 

  46. Hu JQ, Xu LH, Wu SQ, Zhu ZZ (2019) Electronic and optical properties of graphane, silicane, MoS2 homo-bilayers and hetero-bilayers. Curr Appl Phys 19:1222–1232

    Article  Google Scholar 

  47. Son J, Lee S, Kim SJ, Park BC, Lee HK, Kim S, Kim JH, Hong BH, Hong J (2016) Hydrogenated monolayer graphene with reversible and tunable wide band gap and its field-effect transistor. Nat Commun 7:1–7

    Article  CAS  Google Scholar 

  48. Schleder GR, Marinho E Jr, Baquiao DJ, Celaschi YM, Gollino F, Dalpian GM, Autreto PA (2020) Tuning hydrogen adsorption and electronic properties from graphene to fluorographone. Phys Rev Mater 4:074005

    Article  CAS  Google Scholar 

  49. Li S, Li J, Wang Y, Yu C, Li Y, Duan W, Wang Y, Zhang J (2020) Electric-Field Control of Giant On/Off Current Ratio in Graphene Through Reversible Hydrogenation. arXiv preprint arXiv:2008.09749

  50. Li H, Papadakis R, Hussain T, Karton A, Liu J (2020) Moiré patterns arising from bilayer graphone/graphene superlattice. Nano Res 13:1060–1064

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahdokht Sohrabi Sani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Fig. 5
figure 5

a Structure of graphene with the primitive vectors \({{\varvec{a}}}_{1}\) and \({{\varvec{a}}}_{2}\). Dashed lines show the BLUC. b Schematic depiction of the BLUC of simple bilayer graphene

1.1 Graphene

The lattice structure of graphene monolayer is shown in Fig. 5a. As observed, the BLUC of graphene includes two nonequivalent atoms. Therefore, the TB Hamiltonian of this structure is represented by a \(2\times 2\) matrix:

$$\begin{aligned} {\varvec{{{\mathcal {H}}}_k}}=-\left( \begin{array}{cc} 0 &{} t_0\left[ 1+ 2f({{\varvec{k}}})\right] \\ t_0\left[ 1+2f^{*}({{\varvec{k}}})\right] &{} 0\\ \end{array} \right) . \end{aligned}$$
(10)

1.2 Graphane

Fig. 6
figure 6

a Top view of graphane lattice structure with the primitive vectors \({{\varvec{a}}}_{1}\) and \({{\varvec{a}}}_{2}\). Dashed lines show the BLUC. b Schematic representation of the BLUC of bilayer graphone–graphene

The lattice structure of graphane monolayer is illustrated in Fig. 6a. According to this figure, the BLUC of graphane contains four nonequivalent atoms. Therefore, the TB Hamiltonian of this structure is given by a \(4\times 4\) matrix:

$$\begin{aligned} {\varvec{{{\mathcal {H}}}_k}}=-\left( \begin{array}{cccc} 0 &{} t_0\left[ 1+ 2f({{\varvec{k}}})\right] &{} 0 &{} t^{\prime } \\ t_0\left[ 1+2f^{*}({{\varvec{k}}})\right] &{} 0 &{} t^{\prime } &{} 0 \\ 0 &{} t^{\prime } &{} \varepsilon ^{\mathrm {H}} &{} 0 \\ t^{\prime } &{} 0 &{} 0 &{} \varepsilon ^{\mathrm {H}} \\ \end{array} \right) . \end{aligned}$$
(11)

1.3 Bilayer graphene

According to Fig. 5b, the BLUC of the simple bilayer graphene (AA-stacked) includes four nonequivalent atoms. Therefore, the TB Hamiltonian of the bilayer graphene would be shown by a \(4\times 4\) matrix:

$$\begin{aligned} {\varvec{{{\mathcal {H}}}_k}}=-\left( \begin{array}{ccccccc} 0 &{} t_0\left[ 1+ 2f({{\varvec{k}}})\right] &{} 0 &{} t_\bot \\ t_0\left[ 1+2f^{*}({{\varvec{k}}})\right] &{} 0 &{} t_\bot &{} 0 \\ 0 &{} t_\bot &{} 0 &{} t_0\left[ 1+2f^{*}({{\varvec{k}}})\right] \\ t_\bot &{} 0 &{} t_0\left[ 1+ 2f({{\varvec{k}}})\right] &{} 0 \\ \end{array} \right) , \end{aligned}$$
(12)

in which \(t_\bot =t_0/7\) is the inter-layer hopping parameter between the carbon atoms [32].

1.4 Bilayer graphone–graphene

As it is shown in Fig. 1b, the BLUC of bilayer graphone–graphene (AA-stacked) includes five nonequivalent atoms. Therefore, the TB Hamiltonian of this structure is represented by a \(5\times 5\) matrix:

$$\begin{aligned} {\varvec{{{\mathcal {H}}}_k}}=-\left( \begin{array}{ccccc} 0 &{} t_0\left[ 1+ 2f({{\varvec{k}}})\right] &{} 0 &{} t_\bot &{} 0 \\ t_0\left[ 1+2f^{*}({{\varvec{k}}})\right] &{} 0 &{} t^{\prime }_\bot &{} 0 &{} 0\\ 0 &{} t^{\prime }_\bot &{} 0 &{} t_0\left[ 1+2f^{*}({{\varvec{k}}})\right] &{} t^{\prime }\\ t_\bot &{} 0 &{} t_0\left[ 1+ 2f({{\varvec{k}}})\right] &{} 0 &{} 0\\ 0 &{} 0 &{} t^{\prime } &{} 0 &{} \varepsilon ^{\mathrm {H}}\\ \end{array} \right) , \end{aligned}$$
(13)

where \(t_\bot =t_0/7\) is inter-layer hopping parameter between pristine carbon atoms [32], and \(t^{\prime }_\bot =3t_0/14\) refers to the inter-layer hopping parameter between the carbon atoms in graphene layer and the carbon atoms bonded to the hydrogen atoms in the graphone layer.

1.5 Bilayer graphane–graphene

According to Fig. 6b, since the BLUC of bilayer graphane–graphene (AA-stacked) includes six nonequivalent atoms, its TB Hamiltonian is given by a \(6\times 6\) matrix:

$$\begin{aligned} {\varvec{{{\mathcal {H}}}_k}}=-\left( \begin{array}{cccccc} 0 &{} t_0\left[ 1+ 2f({{\varvec{k}}})\right] &{} 0 &{} t^{\prime }_\bot &{} 0 &{} 0 \\ t_0\left[ 1+2f^{*}({{\varvec{k}}})\right] &{} 0 &{} t^{'}_\bot &{} 0 &{} 0 &{} 0 \\ 0 &{} t^{\prime }_\bot &{} 0 &{} t_0\left[ 1+2f^{*}({{\varvec{k}}})\right] &{} t^{\prime } &{} 0 \\ t^{\prime }_\bot &{} 0 &{} t_0\left[ 1+ 2f({{\varvec{k}}})\right] &{} 0 &{} 0 &{} t^{\prime }\\ 0 &{} 0 &{} t^{\prime } &{} 0 &{} \varepsilon ^{\mathrm {H}} &{} 0\\ 0 &{} 0 &{} &{} t^{\prime } &{} 0 &{} \varepsilon ^{\mathrm {H}}\\ \end{array} \right) . \end{aligned}$$
(14)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohrabi Sani, S., Mousavi, H., Jalilvand, S. et al. Hydrogenation effects on the thermal and magnetic properties of mono- and bilayer graphene. Carbon Lett. 31, 1089–1096 (2021). https://doi.org/10.1007/s42823-021-00227-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-021-00227-4

Keywords

Navigation