Skip to main content
Log in

Seismic evidence of the active regional tectonic faults and the Copahue volcano, at Caviahue Caldera, Argentina

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Understanding interactions between tectonic faults and a nearby active volcano is often realized by combining seismic and field observations. A good example of such an interaction is the Caviahue caldera. It is located in an intra-arc extensional pull-apart basin, within a transition zone joining the northern part of the right-lateral strike-slip Liquiñe-Ofqui Fault System and the thrust-fault Antiñir-Copahue fault zone. Most of the active volcanoes in South Chile are related to the Liquiñe-Ofqui Fault System. Some faults located inside the Caviahue caldera were described with reverse mechanisms by some studies whereas they were found to be normal by others. In order to discriminate the actual focal mechanisms, two seismic clusters that occurred in 2017 and 2018 inside the Caviahue rectangular caldera, close to the active Copahue volcano, were studied. Earthquakes (520) were located; focal mechanisms (56) were determined from which an average seismic moment tensor was calculated. The locations and focal mechanisms of the earthquakes allow splitting the seismicity into two main regions, one of tectonic origin (with strike-slip faults) and another one of volcanic origin (with normal faults). The first seismic cluster is located close to Caviahue village, with strike-slip focal mechanisms, in an NNE direction as the nearby Liquiñe-Ofqui Fault strikes. The other part of the seismicity is located close to the northeastern structures of Copahue volcano, in the hydrothermal zone of Anfiteatro, Termas de Copahue, and Maquinitas. It is oriented in an NE direction and is composed of earthquakes with normal focal mechanisms, not reverse as postulated in past studies. The active Copahue volcano lies in the SW prolongation of these normal faults, in agreement with the tectonics of the Caviahue caldera. Then, the two nearby seismic clusters reveal both a tectonic origin, with strike-slip focal mechanisms compatible with the Liquiñe-Ofqui Fault System, and a hydrothermal origin with normal focal mechanisms, compatible with the hydrothermal system of the Copahue active volcano.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1:
Fig. 2.
Fig. 3.
Fig. 4:
Fig. 5:
Fig. 6:
Fig. 7:
Fig. 8:
Fig. 9:

Similar content being viewed by others

References

  • Adriasola A, Thomson S, Brix M, Hervé F, Stöckhert B (2006) Post-magmatic cooling and late Cenozoic denudation of the North Patagonian Batholith in the Los Lagos region of Chile, 41°-42° 15’ S. Int J Earth Sci 95:504–528. https://doi.org/10.1007/s00531-005-0027-9

    Article  Google Scholar 

  • Agurto H, Rietbrock A, Barrientos S, Bataille K, Legrand D (2012) Seismo-tectonic structure of the Aysén Region, Southern Chile, inferred from the 2007 Mw = 6.2 Aysén earthquake sequence. Geophys J Int 190(1):116–130

    Google Scholar 

  • Agusto M, Tassi F, Caselli A, Vaselli O, Tedesco D, Poreda R (2007) Chemical and isotopic features of thermal fluid discharges in the volcano-hydrothermal system of Caviahue–Copahue volcanic complex (Argentina), in: Geosur 2007: An International Congress on the Geology and Geophysics of the Southern Hemisphere. Santiago de Chile, Actas, p 9

    Google Scholar 

  • Aki K (1965) Maximum likelihood estimate of b in the formula log (N) = a-bM and its confidence limits. Bull Earthquake Res Inst Tokyo Univ 43:237–239

    Google Scholar 

  • Allmendinger R, Cardozo N, Fisher D (2011) Structural geology algorithms: vectors and tensors. Cambridge University Press

  • Álvarez-Gómez J (2014) FMC: a one-liner python program to manage, classify and plot focal mechanisms, in: EGU General Assembly Conference Abstracts

  • Amato A, Chiarabba C, Cocco M, di Bona M, Selvaggi G (1994) The 1989–1990 seismic swarm in the Alban Hills volcanic area, central Italy. J Volcanol Geotherm Res 61:225–237

    Google Scholar 

  • Angermann D, Klotz J, Reigber C (1999) Space-geodetic estimation of the Nazca-South America Euler vector. Earth Planet Sci Lett 171:329–334

    Google Scholar 

  • Aoki Y, Segall P, Kato T, Cervelli P, Shimada S (1999) Imaging magma transport during the 1997 seismic swarm off the Izu Peninsula, Japan. Science 286:927–930

    Google Scholar 

  • Barcelona H, Yagupsky D, Vigide N, Senger M (2019) Structural model and slip-dilation tendency analysis at the Copahue geothermal system: inferences on the reservoir geometry. J Volcanol Geotherm Res 375:18–31

    Google Scholar 

  • Barrientos S, Ward S (1990) The 1960 Chile earthquake: inversion for slip distribution from surface deformation. Geophys J Int 103:589–598. https://doi.org/10.1111/j.1365-246X.1990.tb05673.x

    Article  Google Scholar 

  • Bonali F (2013) Earthquake-induced static stress change on magma pathway in promoting the 2012 Copahue eruption. Tectonophysics 608:127–137

    Google Scholar 

  • Bonali F, Corazzato C, Bellotti F, Groppelli G (2016) Active tectonics and its interactions with Copahue volcano, in: Copahue volcano. Springer, pp. 23–45

  • Caselli A, Agusto M, Vélez M, Forte P, Bengoa C, Daga R, Albite J, Capaccioni B (2016) The 2012 eruption. In: Copahue volcano. Springer, Berlin, pp 61–77

    Google Scholar 

  • Cembrano J, Lara L (2009) The link between volcanism and tectonics in the southern volcanic zone of the Chilean Andes: a review. Tectonophysics 471:96–113

    Google Scholar 

  • Cembrano J, Hervé F, Lavenu A (1996) The Liquiñe-Ofqui fault zone: a long-lived intra-arc fault system in southern Chile. Tectonophysics 259:55–66. https://doi.org/10.1016/0040-1951(95)00066-6

    Article  Google Scholar 

  • Cembrano J, Lavenu A, Reynolds P, Arancibia G, López G, Sanhueza A (2002) Late Cenozoic transpressional ductile deformation north of the Nazca–South America–Antarctica triple junction. Tectonophysics 354:289–314

    Google Scholar 

  • Chinn D, Isacks B (1983) Accurate source depths and focal mechanisms of shallow earthquakes in western South America and in the New Hebrides island arc. Tectonics 2:529–563

    Google Scholar 

  • Chouet B (1996) Long-period volcano seismicity: its source and use in eruption forecasting. Nature 380:309–316

    Google Scholar 

  • Chouet B, Matoza R (2013) A multi-decadal view of seismic methods for detecting precursors of magma movement and eruption. J Volcanol Geotherm Res 252:108–175

    Google Scholar 

  • Cox S (2005) Coupling between deformation, fluid pressures, and fluid flow in oreproducing hydrothermal systems at depth in the crust. Economic Geology 100th Anniversary Volume:39–75

  • DeMets C, Gordon R, Argus D, Stein S (1994) Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophys Res Lett 21:2191–2194

    Google Scholar 

  • Díaz D, Zúñiga F, Castruccio A (2020) The interaction between active crustal faults and volcanism: a case study of the Liquiñe-Ofqui Fault Zone and Osorno volcano. Southern Andes, using magnetotellurics, JVGR 393:106806

    Google Scholar 

  • Endo E, Malone S, Noson L, Weaver C (1981) Locations magnitudes and statistics of the March 20–May 18 earthquake sequence. U.S. Geol. Surv. Prof. Pap. 1250, 93–107 US Govt. Printing Office, Washington, DC

  • Folguera A, Ramos V (2000) Control estructural del volcán Copahue: implicancias tectónicas para el arco volcánico cuaternario (36°-39°S). Rev Asoc Geol Argent 55:229–244

    Google Scholar 

  • Folguera A, Ramos V, Melnick D (2002) Partición de la deformación en la zona del arco volcánico de los Andes neuquinos (36-39°S) en los últimos 30 millones de años. Revista Geológica de Chile 29, 227–240

  • Folguera A, Ramos V, Hermanns R, Naranjo J (2004) Neotectonics in the foothills of the southernmost central Andes (37–38 S): Evidence of strike-slip displacement along the Antiñir-Copahue fault zone. Tectonics 23

  • Folguera A, Rojas Vera E, Vélez L, Tobal J, Orts D, Agusto M, Caselli A, Ramos V (2016) A review of the geology, structural controls, and tectonic setting of Copahue volcano, southern volcanic zone, Andes, Argentina. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 3–22. https://doi.org/10.1007/978-3-662-48005-2_1

    Book  Google Scholar 

  • Forte P, Bengoa C, Caselli A (2012) Análisis preliminar de la actividad sísmica del complejo volcánico Copahue-Caviahue mediante técnicas de array, in: XIII Congreso Geológico Chileno, Antofagasta, pp. 574–576

  • Gudmundsson A (2011) Rock fractures in geologic processes. In: Rock Fractures in Geological Processes. https://doi.org/10.1017/CBO9780511975684

    Chapter  Google Scholar 

  • Hardebeck J, Shearer P (2003) Using S/P amplitude ratios to constrain the focal mechanisms of small earthquakes. Bull Seismol Soc Am 93:2434–2444

    Google Scholar 

  • Havskov J, Voss P, Ottemöller L (2020) Seismological observatory software: 30 yr of SEISAN. Seismological Research Letters 91(3):1846–1852. https://doi.org/10.1785/0220190313

    Article  Google Scholar 

  • Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of central Chile. Contrib Mineral Petrol 98:455–489

    Google Scholar 

  • Hill D (1977) A model for earthquake swarms. J Geophys Res 82:1347–1352

    Google Scholar 

  • Hill D, Ellsworth W, Johnston M, Langbein J, Oppenheimer D, Pitt A, Reasenberg P, Sorey M, McNutt S (1990) The 1989 earthquake swarm beneath Mammoth Mountain, California: an initial look at the 4 May through 30 September activity. Bull Seismol Soc Am 80:325–339

    Google Scholar 

  • Hurst A, McGinty P (1999) Earthquake swarms to the west of Mt Ruapehu preceding its 1995 eruption. J Volcanol Geotherm Res 90:19–28

    Google Scholar 

  • Ibáñez J, Del Pezzo E, Almendros J, La Rocca M, Alguacil G, Ortiz R, García A (2000) Seismo volcanic signals at Deception Island volcano (Antarctica): wavefield analysis and source modeling. J Geophys Res 105(6):13905–13931

    Google Scholar 

  • Ibáñez J, Carmona E, Almendros J, Saccorotti G, Del Pezzo E, Abril M, Ortiz R (2003) The 1998–1999 seismic series at Deception Island volcano, Antarctica. J Vol Geo Res 128:65–88

    Google Scholar 

  • Ibáñez J, Del Pezzo E, Bengoa C, Caselli A, Badi G, Almendros J (2008) Volcanic tremor and local earthquakes at Copahue volcanic complex, Southern Andes, Argentina. J Volcanol Geotherm Res 174:284–294

    Google Scholar 

  • Ibáñez J, De Angelis S, Díaz-Moreno A, Hernández P, Alguacil G, Posadas A, Pérez N (2012) Insights into the 2011–2012 submarine eruption off the coast of El Hierro (Canary Islands, Spain) from statistical analyses of earthquake activity. Geophys J Int 191:659–670

    Google Scholar 

  • JICA report (1992) The feasibility study on the Northern Neuquén Geothermal Development Project. Final Report. Japan Interna-tional Cooperation Agency

  • Kanamori H, Rivera L (2017) An Mw = 7.7 slow earthquake in 1960 near the Aysén Fjord region, Chile. Geophysical Journal International 211. https://doi.org/10.1093/GJI/GGX292

  • Kundu B, Legrand D, Gahalaut K, Gahalaut V, Mahesh P, Kamesh Raju K, Catherine J, Ambikapthy A, Chadha R (2012) The 2005 volcano-tectonic earthquake swarm in the Andaman Sea: triggered by the 2004 great Sumatra-Andaman earthquake. Tectonics 31:TC5009. https://doi.org/10.1029/2012TC003138

    Article  Google Scholar 

  • Lamberti M, Vigide N, Venturi S, Agusto M, Yagupsky D, Winocur D, Tassi F (2019) Structural architecture releasing deep-sourced carbon dioxide diffuse degassing at the Caviahue–Copahue volcanic complex. J Volcanol Geotherm Res 374:131–141

    Google Scholar 

  • Lange D, Cembrano J, Rietbrock A, Haberland C, Dahm T, Bataille K (2008) First seismic record for intra-arc strike-slip tectonics along the Liquiñe-Ofqui fault zone at the obliquely convergent plate margin of the southern Andes. Tectonophysics 455:14–24. https://doi.org/10.1016/j.tecto.2008.04.014

    Article  Google Scholar 

  • Lavenu A, Cembrano J (1999) Compressional and transpressional-stress pattern for Pliocene and Quaternary brittle deformation in fore arc and intra-arc zones (Andes of central and southern Chile). J Struct Geol 21:1669–1691. https://doi.org/10.1016/S0191-8141(99)00111-X

    Article  Google Scholar 

  • Lazo J, Basualto D, Bengoa C, Cardona C, Franco L, Gil-Cruz F, Morales S (2015) Spatial distribution of b-value of the Copahue volcano during 2012-2014 eruptive period: relationship between magmatic and hydrothermal system. EGUGA 982

  • Lee W, Bennet R, Meaghu K (1972) A method of estimating magnitude of local earthquakes from signal duration. U.S. Geological Survey Open File Report, 28 pp.

  • Legrand D, Calahorrano A, Guillier B, Rivera L, Ruiz M, Villagómez D, Yepes H (2002) Stress tensor analysis of the 1998–1999 tectonic swarm of northern Quito related to the volcanic swarm of Guagua Pichincha volcano, Ecuador. Tectonophysics 344(1):15–36

    Google Scholar 

  • Legrand D, Baby P, Bondoux F, Dorbath C, Bes de Berc S, Rivadeneira M (2005) The 1999-2000 seismic experiment of Macas swarm (Ecuador) in relation with rift inversion in Subandean foothills. Tectonophysics 395:67–80

    Google Scholar 

  • Legrand D, Barrientos S, Bataille K, Cembrano J, Pavez A (2011) The fluid-driven tectonic swarm of Aysen Fjord, Chile (2007) associated with two earthquakes (Mw = 6.1 and Mw = 6.2) within the Liquiñe-Ofqui fault zone. Cont Shelf Res 31:154–161

    Google Scholar 

  • Legrand D, Tassara A, Morales D (2012) Megathrust asperities and clusters of slab dehydration identified by spatiotemporal characterization of seismicity below the Andean margin. Geophys J Int 191:923–931

    Google Scholar 

  • Legrand D, Marroquín G, DeMets C, Mixco L, García A, Villalobos M, Ferrés D, Gutíerrez E, Escobar D, Torres R, Hernández D (2020) Active deformation in the San Salvador extensional stepover, El Salvador from an analysis of the April–May 2017 earthquake sequence and GPS data. J South Am Eart Sc 104:102854

    Google Scholar 

  • Legrand D, Iglesias A, Singh S, Cruz-Atienza V, Yoon C, Dominguez LA, Valenzuela R, Suárez G, Castro-Artola O (2021) The influence of fluids in the unusually high-rate seismicity in the Ometepec segment of the Mexican subduction zone. Geophys J Int accepted

  • Lesage P, Heap M, Kushnir A (2018) A generic model for the shallow velocity structure of volcanoes. J Volcanol Geotherm Res 356:114–126. https://doi.org/10.1016/j.jvolgeores.2018.03.003

    Article  Google Scholar 

  • Linares E, Ostera H, Mas L (1999) Cronologia potasio-argon del complejo efusivo Copahue-Caviahue, Provincia del Neuquen. Rev Asoc Geol Argent 54:240–247

    Google Scholar 

  • Lundgren P, Nikkhoo M, Samsonov S, Milillo P, Gil-Cruz F, Lazo J (2017) Source model for the Copahue volcano magma plumbing system constrained by InSAR surface deformation observations. J Geophys Res Solid Earth 122(7):5729–5747

    Google Scholar 

  • Malone S, Pavlis G (1983) Velocity structure and relocation of earthquakes at Mount St. Helens Eos Trans AGU 64:895

    Google Scholar 

  • McNutt S (1996) Seismic monitoring and eruption forecasting of volcanoes: a review of the state-of-the-art and case histories. In: Scarpa R, Tilling R (eds) Monitoring and mitigation of volcano hazards. Springer-Verlag, pp 99–146

  • McNutt S (2005) Volcanic seismology. Annu Rev Earth Planet Sci 32:461–491

    Google Scholar 

  • Melnick D, Folguera A, Ramos V (2006) Structural control on arc volcanism: the Caviahue–Copahue complex, Central to Patagonian Andes transition (38° S). J S Am Earth Sci 22(66):88–88. https://doi.org/10.1016/j.jsames.2006.08.008

    Article  Google Scholar 

  • Mogi K (1963) Some discussions on the aftershocks, foreshocks and earthquake swarms—the fracture of a semi-infinite body caused by an inner stress origin and its relation to the earthquake phenomena. Bull Earthq Res Inst, Univ Tokyo 41:615–658

    Google Scholar 

  • Mora-Stock C, Comte D, RussoR GA, Mocanu V (2010) Aysén seismic swarm (January 2007) in southern Chile: analysis using joint hypocentral determination. J Seismol 14(4):683–691. https://doi.org/10.1007/s10950-010-9190-y

    Article  Google Scholar 

  • OVDAS, Observatorio Volcanológico de los Andes del Sur (2018) Reporte especial de actividad volcánica Región del Bio Bio, 26 de Marzo de 2018, 16:30 horas (Horario Local). Retrieved from http://sitiohistorico.sernageomin.cl/reportesVolcanes/20180326044953227REAV_20180326_1630_Copahue.pdf

  • Patanè D, De Gori P, Chiarabba C, Bonaccorso A (2003) Magma ascent and the pressurization of Mount Etna's volcanic system. Science 299(5615):2061–2063

    Google Scholar 

  • Pavlis G, Booker J (1983) Progressive multiple event location (PMEL). Bull Seismol Soc Am 73:1753–1777

    Google Scholar 

  • Pérez-Estay N, Yáñez G, Crempien J, Roquer T, Cembrano J, Valdenegro P, Aravena D, Arancibia G, Morata D (2020) Seismicity in a transpressional volcanic arc: the Liquiñe–Ofqui fault system in the Puyuhuapi area, Southern Andes, Chile (44°S). Tectonics. 39. https://doi.org/10.1029/2020TC006391

  • Pesce A (1989) Evolución volcano-tectónica del complejo efusivo Copahue-Caviahue y su modelo geotérmico preliminar. Rev Asoc Geol Argent 44:307–327

    Google Scholar 

  • Power J, Lahr J, Page R, Chouet B, Stephens C, Harlow D, Murray T, Davies J (1994) Seismic evolution of the 1989–1990 eruption sequence of Redoubt volcano. Alaska J Volcanol Geotherm Res 62:69–94

    Google Scholar 

  • Radic J (2010) Las cuencas cenozoicas y su control en el volcanismo de los Complejos Nevados de Chillán y Copahue-Callaqui (Andes del Sur, 36-39 S). Andean Geol 37:220–246

    Google Scholar 

  • Rojas Vera E, Folguera A, Spagnuolo M, Giménez M, Ruiz F, Martinez P, Ramos V (2009) La neotectónica del arco volcánico a la latitud del volcán Copahue (38° S). Andes de Neuquén Revista de la Asociación Geológica Argentina 65(204):214

    Google Scholar 

  • Roman D, Power J, Moran S, Cashman K, Doukas M, Neal C, Gerlach T (2004) Evidence for dike emplacement beneath Iliamna volcano, Alaska in 1996. J Volcanol Geotherm Res 130:265–284

    Google Scholar 

  • Rosenau M (2004) Tectonics of the Southern Andean intra-arc zone (38°-42° S). Ph.D. thesis. Free University, Berlin, Germany

  • Rosenau M, Melnick D, Echtler H (2006) Kinematic constraints on intra-arc shear and strain partitioning in the southern Andes between 38° S and 42° S latitude. Tectonics 25

  • Russo R, Gallego A, Comte D, Mocanu V, Murdie R, Mora C, VanDecar J (2011) Triggered seismic activity in the Liquiñe–Ofqui fault zone, southern Chile, during the 2007 Aysen seismic swarm. Geophys J Int 184(3):1317–1326. https://doi.org/10.1111/j.1365-246X.2010.04908.x

    Article  Google Scholar 

  • Scholz C (1968) The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. Bull Seismol Soc Am 58:399–415

    Google Scholar 

  • Sielfeld G, Lange D, Cembrano J (2019) Intra-arc crustal seismicity: seismo-tectonic Implications for the southern Andes volcanic zone, Chile. Tectonics. https://doi.org/10.1029/2018TC004985

  • Snoke J (1984) A program for focal mechanism determination by combined use of polarity and SVP amplitude ratio data. Earthq Notes 55:15

    Google Scholar 

  • Stern C (2004) Active Andean volcanism: its geologic and tectonic setting. Revista geológica de Chile 31:161–206

    Google Scholar 

  • Tamburello G, Agusto M, Caselli A, Tassi F, Vaselli O, Calabrese S, Rouwet D, Capaccioni B, Di Napoli R, Cardellini C et al (2015) Intense magmatic degassing through the lake of Copahue volcano, 2013–2014. J Geophys Res Solid Earth 120:6071–6084

    Google Scholar 

  • Toda S, Stein R, Sagiya T (2002) Evidence from the AD 2000 Izu islands earthquake swarm that stressing rate governs seismicity. Nature 419(6902):58–61

    Google Scholar 

  • Varekamp J (2004) Copahue volcano: a modern terrestrial analog for the opportunity landing site? EOS Trans Am Geophys Union 85(41):401–407

    Google Scholar 

  • Varekamp J, Ouimette A, Herman S, Bermúdez A, Delpino D (2001) Hydrothermal element fluxes from Copahue, Argentina: a “beehive” volcano in turmoil. Geology 29:1059–1062

    Google Scholar 

  • Varekamp J, deMoor J, Merrill M, Colvin A, Goss A, Vroon P, Hilton D (2006) Geochemistry and isotopic characteristics of the Caviahue-Copahue volcanic complex, Province of Neuquén, Argentina. SPECIAL PAPERS-GEOLOGICAL SOCIETY OF AMERICA 407:317

    Google Scholar 

  • Vargas G, Rebolledo S, Sepulveda S, Lahsen A, Thiele R, Townley B et al (2013) Submarine earthquake rupture, active faulting and volcanism along the major Liquiñe–Ofqui Fault Zone and implications for seismic hazard assessment in the Patagonian Andes. Andean Geology 40:141–171

    Google Scholar 

  • Vélez M, Euillades P, Caselli A, Blanco M, Díaz J (2011) Deformation of Copahue volcano: inversion of InSAR data using a genetic algorithm. J Volcanol Geotherm Res 202:117–126

    Google Scholar 

  • Waldhauser F, Ellsworth W (2000) A double-difference earthquake location algorithm: method and application to the northern Hayward fault, California. Bull Seismol Soc Am 90:1353–1368

    Google Scholar 

  • Walter T, Wang R, Zimmer M, Grosser H, Lühr B, Ratdomopurbo A (2007) Volcanic activity influenced by tectonic earthquakes: static and dynamic stress triggering at Mt. Merapi. Geophys Res Lett 34:L05304. https://doi.org/10.1029/2006GL028710

    Article  Google Scholar 

  • Wassermann J (2011) Volcano Seismology, Chapter 13, IASPEI New manual of seismological observatory practice 2, NMSOP-2. https://doi.org/10.2312/GFZ.NMSOP.2_ch13

  • Watt SF, Pyle DM, Mather TA (2009) The influence of great earthquakes on volcanic eruption rate along the Chilean subduction zone. Earth Planet Sci Lett 277:399–407. https://doi.org/10.1016/j.epsl.2008.11.005

    Article  Google Scholar 

  • White R, McCausland W (2016) Volcano-tectonic earthquakes: a newtool for estimating intrusive volumes and forecasting eruptions. J Volcanol Geotherm Res 309:139–155

    Google Scholar 

  • White R, McCausland W (2019) A process-based model of pre-eruption seismicity patterns and its use for eruption forecasting at dormant stratovolcanoes. J Volcanol Geotherm Res 382:267–297

    Google Scholar 

  • Wyss M (1973) Towards a physical understanding of the earthquake frequency distribution. Geophys J R Astron Soc 31:341–359

    Google Scholar 

Download references

Acknowledgements

We would like to thank all the colleagues and students who participated in the fieldwork and made it possible to carry out the seismological network. Adrian Arias, Higinio de Monte, and the municipality of Caviahue gave essential help during the installation and maintenance. This work was supported by the projects PI-UNRN 40-A-548, PICT-2016-0269, and the financial aid of the department of Earth Sciences from University of Florence. DL thanks PASPA-DGAPA, UNAM program for a sabbatical year in Florence, Italy, where this study started. We thank Jesús Ibáñez, an anonymous reviewer, and the editor for constructive comments on the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Legrand.

Additional information

Editorial responsibility: A. Cannata

Supplementary Information

ESM 1

(DOCX 550 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montenegro, V.M., Spagnotto, S., Legrand, D. et al. Seismic evidence of the active regional tectonic faults and the Copahue volcano, at Caviahue Caldera, Argentina. Bull Volcanol 83, 20 (2021). https://doi.org/10.1007/s00445-021-01442-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-021-01442-7

Keywords

Navigation