Skip to main content
Log in

On the Korteweg–de Vries Limit for the Fermi–Pasta–Ulam System

  • Original Article
  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this paper, we develop dispersive PDE techniques for the Fermi–Pasta–Ulam (FPU) system with infinitely many oscillators, and we show that general solutions to the infinite FPU system can be approximated by counter-propagating waves governed by the Korteweg–de Vries (KdV) equation as the lattice spacing approaches zero. Our result not only simplifies the hypotheses but also reduces the regularity requirement in the previous study (Schneider and Wayne, In: International conference on differential equations, Berlin, 1999, World Sci. Publ, River Edge, NJ, Vol 1, 2, pp 390–404, 2000).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The Hamiltonian is derived from (1.1).

  2. These definitions are consistent with the discrete Laplacian \(\Delta _h\), because \((-\Delta _h)\) is the Fourier multiplier of the symbol \(\frac{4}{h^2}\sin ^2(\frac{h\xi }{2})\); thus, \(|\nabla _h|=\sqrt{-\Delta _h}\) and \(\langle \nabla _h\rangle =\sqrt{1-\Delta _h}\).

  3. By the discrete Fourier transform,

    $$\begin{aligned} \begin{aligned} {\mathcal {F}}_h\left( e^{a\partial _h}(u_h^2)\right) (\xi )&=e^{ia\xi }\frac{1}{2\pi }\int _{-\pi /h}^{\pi /h}({\mathcal {F}}_hu_h)(\xi -\eta ) ({\mathcal {F}}_hu_h)(\eta )\mathrm{d}\eta \\&=\frac{1}{2\pi }\int _{-\pi /h}^{\pi /h}e^{ia(\xi -\eta )}({\mathcal {F}}_hu_h)(\xi -\eta ) e^{ia\eta }({\mathcal {F}}_hu_h)(\eta )\mathrm{d}\eta ={\mathcal {F}}_h\left( (e^{a\partial _h}u_h)^2\right) (\xi ). \end{aligned} \end{aligned}$$

    This computation can be extended to any polynomial of finite degree.

  4. They are sometimes called the Bourgain spaces or dispersive Sobolev spaces.

  5. In particular, when \(\lambda = h\mathbb {Z}\), \({{\tilde{u}}}\) (as in Definition 3.14) is defined by

    $$\begin{aligned} {{\tilde{u}}}_h(\tau , \xi ) = h \sum _{x \in h\mathbb {Z}} \int _{\mathbb {R}} e^{-it\tau } e^{-ix \xi } u_h(t,x) \; \mathrm{d}\tau . \end{aligned}$$
  6. Roughly speaking, in a (k-)multilinear form, one has a frequency relation \(\xi _1 + \cdots + \xi _k = \xi \); thus, the multilinear form vanishes unless the maximum two frequencies are comparable.

  7. One can fix \(b > \frac{1}{2}\) here,and \(\delta > 0\) below such that the argument of the local well-posedness is valid.

  8. In what follows, as mentioned in Remark 2.4, we denote the solutions to KdVs (2.13) by \(w_h^{\pm }\), even if they are posed on \(\mathbb {R}\).

References

  1. Bambusi, D., Ponno, A.: On metastability in FPU. Commun. Math. Phys. 264(2), 539–561, 2006

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Berchialla, L., Galgani, L., Giorgilli, A.: Localization of energy in FPU chains. Discrete Contin. Dyn. Syst. 11(4), 855–866, 2004

    Article  MathSciNet  MATH  Google Scholar 

  3. Berman, G.P., Izrailev, F.M.: The Fermi–Pasta–Ulam problem: fifty years of progress. Chaos 15(1), 015104, 18, 2005

  4. Bona, J.L., Smith, R.: The initial-value problem for the Korteweg–de Vries equation. Philos. Trans. R. Soc. London Ser. A 278(1287), 555–601, 1975

  5. Bourgain, J.: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations. Geom. Funct. Anal. 3(2), 107–156, 1993

    Article  MathSciNet  MATH  Google Scholar 

  6. Bourgain, J.: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation. Geom. Funct. Anal. 3(3), 209–262, 1993

    Article  MathSciNet  MATH  Google Scholar 

  7. Chirilus-Bruckner, M., Chong, C., Prill, O., Schneider, G.: Rigorous description of macroscopic wave packets in infinite periodic chains of coupled oscillators by modulation equations. Discrete Contin. Dyn. Syst. Ser. S 5(5), 879–901, 2012

    MathSciNet  MATH  Google Scholar 

  8. Christ, M., Colliander, J., Tao, T.: Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations. Am. J. Math. 125(6), 1235–1293, 2003

    Article  MathSciNet  MATH  Google Scholar 

  9. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Global well-posedness for KdV in Sobolev spaces of negative index. Electron. J. Differential Equations No. 26, 7, 2001

    MATH  Google Scholar 

  10. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Sharp global well-posedness for KdV and modified KdV on \(\mathbb{R}\) and \(\mathbb{T}\). J. Am. Math. Soc. 16(3), 705–749, 2003

    Article  MathSciNet  Google Scholar 

  11. Constantin, P., Saut, J.-C.: Local smoothing properties of dispersive equations. J. Am. Math. Soc. 1(2), 413–439, 1988

    Article  MathSciNet  MATH  Google Scholar 

  12. Eilbeck, J.C., Numerical studies of solitons on lattices Nonlinear coherent structures in physics and biology (Dijon, , : Lecture Notes in Phys., vol. 393. Springer, Berlin 1991, 143–150, 1991

  13. Fermi, E., Pasta, P., Ulam, S., Tsingou, M.: Studies of the nonlinear problems, Tech. report, Los Alamos Scientific Lab., N. Mex., 1955.

  14. Friesecke, G., Pego, R.L.: Solitary waves on FPU lattices. I. Qualitative properties, renormalization and continuum limit. Nonlinearity 12(6), 1601–1627, 1999

  15. Friesecke, G., Pego, R.L.: Solitary waves on FPU lattices. II. Linear implies nonlinear stability. Nonlinearity 15(4), 1343–1359, 2002

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Friesecke, G., Pego, R.L.: Solitary waves on Fermi-Pasta-Ulam lattices. III. Howland-type Floquet theory. Nonlinearity 17(1), 207–227, 2004

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Friesecke, G., Pego, R.L.: Solitary waves on Fermi–Pasta–Ulam lattices. IV. Proof of stability at low energy. Nonlinearity 17(1), 229–251, 2004

  18. Friesecke, G., Wattis, J.A.D.: Existence theorem for solitary waves on lattices. Commun. Math. Phys. 161(2), 391–418, 1994

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Fucito, F., Marchesoni, F., Marinari, E., Parisi, G., Peliti, L., Ruffo, S., Vulpiani, A.: Approach to equilibrium in a chain of nonlinear oscillators. Journal de Physique 43(5), 707–713, 1982

    Article  MathSciNet  Google Scholar 

  20. Gaison, J., Moskow, S., Wright, J.D., Zhang, Q.: Approximation of polyatomic FPU lattices by KdV equations. Multiscale Model. Simul. 12(3), 953–995, 2014

    Article  MathSciNet  MATH  Google Scholar 

  21. Gallavotti, G.: The Fermi–Pasta–Ulam problem: a status report, vol. 728. Springer 2007

  22. Giannoulis, J., Mielke, A.: The nonlinear Schrödinger equation as a macroscopic limit for an oscillator chain with cubic nonlinearities. Nonlinearity 17(2), 551–565, 2004

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Giannoulis, J., Mielke, A.: Dispersive evolution of pulses in oscillator chains with general interaction potentials. Discrete Contin. Dyn. Syst. Ser. B 6(3), 493–523, 2006

    MathSciNet  MATH  Google Scholar 

  24. Guo, Z.: Global well-posedness of Korteweg-de Vries equation in \(H^{-3/4}(\mathbb{R})\). J. Math. Pures Appl. (9) 91(6), 583–597, 2009

  25. Hong, Y., Yang, C.: Strong convergence for discrete nonlinear Schrödinger equations in the continuum limit. SIAM J. Math. Anal. 51(2), 1297–1320, 2019

    Article  MathSciNet  MATH  Google Scholar 

  26. Hong, Y., Yang, C.: Uniform Strichartz estimates on the lattice. Discrete Contin. Dyn. Syst. 39(6), 3239–3264, 2019

    Article  MathSciNet  MATH  Google Scholar 

  27. Ignat, L.I., Zuazua, E.: Numerical dispersive schemes for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 47(2), 1366–1390, 2009

    Article  MathSciNet  MATH  Google Scholar 

  28. Izrailjev, F.M., Chirikov, B.V.: Statistical properties of a nonlinear string. Soviet Physics-Doklady 11, 30–32, 1966

    ADS  Google Scholar 

  29. Keel, M., Tao, T.: Endpoint Strichartz estimates. Am. J. Math. 120(5), 955–980, 1998

    Article  MathSciNet  MATH  Google Scholar 

  30. Kenig, C.E., Ponce, G., Vega, L.: On the (generalized) Korteweg-de Vries equation. Duke Math. J. 59(3), 585–610, 1989

    Article  MathSciNet  MATH  Google Scholar 

  31. Kenig, C.E., Ponce, G., Vega, L.: Well-posedness of the initial value problem for the Korteweg-de Vries equation. J. Am. Math. Soc. 4(2), 323–347, 1991

    Article  MathSciNet  MATH  Google Scholar 

  32. Kenig, C.E., Ponce, G., Vega, L.: The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices. Duke Math. J. 71(1), 1–21, 1993

    Article  MathSciNet  MATH  Google Scholar 

  33. Kenig, C.E., Ponce, G., Vega, L.: Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle. Commun. Pure Appl. Math. 46(4), 527–620, 1993

    Article  MathSciNet  MATH  Google Scholar 

  34. Kenig, C.E., Ponce, G., Vega, L.: A bilinear estimate with applications to the KdV equation. J. Am. Math. Soc. 9(2), 573–603, 1996

    Article  MathSciNet  MATH  Google Scholar 

  35. Kenig, C.E., Ponce, G., Vega, L.: On the ill-posedness of some canonical dispersive equations. Duke Math. J. 106(3), 617–633, 2001

    Article  MathSciNet  MATH  Google Scholar 

  36. Killip, R., Vişan, M.: KdV is well-posed in \(H^{-1}\). Ann. Math. (2) 190(1), 249–305, 2019

  37. Kishimoto, N.: Well-posedness of the Cauchy problem for the Korteweg-de Vries equation at the critical regularity. Differ. Integr. Equ. 22(5–6), 447–464, 2009

    MathSciNet  MATH  Google Scholar 

  38. Mielke, A.: Macroscopic behavior of microscopic oscillations in harmonic lattices via Wigner-Husimi transforms. Arch. Ration. Mech. Anal. 181(3), 401–448, 2006

    Article  MathSciNet  MATH  Google Scholar 

  39. Mizumachi, T.: Asymptotic stability of \(N\)-solitary waves of the FPU lattices. Arch. Ration. Mech. Anal. 207(2), 393–457, 2013

    Article  MathSciNet  Google Scholar 

  40. Nishida, T.: A note on an existence of conditionally periodic oscillation in a one-dimensional anharmonic lattice. Mem. Fac. Eng. Kyoto Univ. 33, 27–34, 1971

    MathSciNet  Google Scholar 

  41. Ponno, A., Bambusi, D.: Korteweg–de Vries equation and energy sharing in Fermi–Pasta–Ulam. Chaos 15(1), 015107, 5, 2005

  42. Rink, B.: Symmetry and resonance in periodic FPU chains. Commun. Math. Phys. 218(3), 665–685, 2001

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Rink, B.: Proof of Nishida’s conjecture on anharmonic lattices. Commun. Math. Phys. 261(3), 613–627, 2006

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Saut, J.C., Temam, R.: Remarks on the Korteweg-de Vries equation. Israel J. Math. 24(1), 78–87, 1976

    Article  MathSciNet  MATH  Google Scholar 

  45. Schneider, G.: Bounds for the nonlinear Schrödinger approximation of the Fermi-Pasta-Ulam system. Appl. Anal. 89(9), 1523–1539, 2010

    Article  MathSciNet  MATH  Google Scholar 

  46. Schneider, G., Wayne, C.E.: Counter-propagating waves on fluid surfaces and the continuum limit of the Fermi–Pasta–Ulam model, International Conference on Differential Equations, Vol. 1, 2 (Berlin, 1999), World Sci. Publ., River Edge, NJ, 2000, pp. 390–404.

  47. Tao, T.: Multilinear weighted convolution of \(L^2\)-functions, and applications to nonlinear dispersive equations. Am. J. Math. 123(5), 839–908, 2001

    Article  Google Scholar 

  48. Tao, T.: Nonlinear dispersive equations, CBMS Regional Conference Series in Mathematics, vol. 106, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2006, Local and global analysis.

  49. Zabusky, N.J.: Fermi–Pasta–Ulam, solitons and the fabric of nonlinear and computational science: history, synergetics, and visiometrics. Chaos 15(1), 015102, 16, 2005

  50. Zabusky, N.J., Kruskal, M.D: Interaction of “solitons” in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15(6), 240, 1965

Download references

Acknowledgements

This research of the first author was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2020R1A2C4002615). This work of the second author was supported by project France-Chile ECOS-Sud C18E06, the Ewha Womans University Research Grant of 2020, the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1F1A1A0106876811). This work of the third author was supported by the research grant of the Chungbuk National University in 2020 and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1C1C1005700). Part of this work was complete while the second author was visiting Chung-Ang University (Seoul, Republic of Korea). The second author acknowledges the warm hospitality of the institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhun Yang.

Additional information

Communicated by G. Friesecke.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Failure of the Linear Estimate

In subsection 5.2, we measured the size of linear interpolation of the FPU flows in \(C_t([-T,T]:H_x^s(h\mathbb {Z}))\) in order to approximate the FPU flows by the Airy flows. More precisely, the crucial estimates were that for \(0\leqq s\leqq 1\),

$$\begin{aligned} \Vert l_h S_h^{\pm }(t) f_h \Vert _{C_t([0,T]:H_x^s(h\mathbb {Z}))} \lesssim \Vert l_h f_h \Vert _{H^s(h\mathbb {Z})} \lesssim \Vert f_h\Vert _{H^s(h\mathbb {Z})}. \end{aligned}$$

However, such uniform estimates fail if we consider instead the \(X^{s,b}\) spaces associated to KdVs (7.1) as approximation spaces, which means that even though FPU and KdVs are shown to be well-posed in \(L^2\) via \(X^{s,b}\), justification of approximation from FPU to KdVs via \(X^{s,b}\) is nontrivial.

Proposition A.1

Let \(0\leqq s\leqq 1\) and \(b>0\). Then,

$$\begin{aligned} \sup _{h> 0, \ f_h\in H^s(h\mathbb {Z}) } \frac{\Vert \theta (t) l_h S_h^{\pm }(t) f_h \Vert _{X_{\pm }^{s,b}}}{\Vert f_h\Vert _{H^s(h\mathbb {Z})}} = \infty , \end{aligned}$$
(A.1)

where \(X_{\pm }^{s,b}\) is defined as in (5.1).

Proof

We claim that there exist a constant \(C_b > 0\) independent of \(h>0\) such that

$$\begin{aligned} \Vert \theta (t) l_h S_h^{\pm }(t) f_h \Vert _{X_{\pm }^{s,b}}^2 > rsim&~{}C_b\frac{1}{h^{6b}}\Vert f_h\Vert _{H^s}^2. \end{aligned}$$
(A.2)

for \(f_h \in H_h^s\) satisfying \(\text{ supp } {{\mathcal {F}}}_h(f_h) \subset \{ \xi \in \mathbb {T}_h : |\xi |\geqq \frac{\pi }{2h} \}\). Then (A.1) immediately follows. We prove only (A.2) for the \(+\) case, since the other case can be treated similarly. Using Lemma 5.12, we compute

$$\begin{aligned}&\Vert \theta (t) l_h S_h^{+}(t) f_h \Vert _{X_{+}^{s,b}}^2 \\&\quad =\sum _{m\in \mathbb {Z}}\int _{\gamma _{m,h}+[-\frac{\pi }{h},\frac{\pi }{h})}\left\| \langle \xi \rangle ^s \left\langle \tau - \frac{\xi ^3}{24} \right\rangle ^b {\mathcal {F}}_{t,x} \big (\theta (t) l_h S_h^{+}(t) f_h\big )(\tau ,\xi ) \right\| _{L_{\tau }^2}^2 \mathrm{d}\xi \\&\quad =\sum _{m\in \mathbb {Z}} \int _{-\frac{\pi }{h}}^{\frac{\pi }{h}} \left\| {{\widehat{\theta }}}( \tau )\left\langle \tau - \frac{1}{24}(\xi +\gamma _{m,h} )^3 + s_h^{+}(\xi ) \right\rangle ^b \right\| _{L_{\tau }^2}^2 \\&\qquad \langle \xi +\gamma _{m,h} \rangle ^{2s} \mathcal {L}_h(\xi +\gamma _{m,h})^2 |{{\mathcal {F}}}_h(f_h)(\xi )|^2 \mathrm{d}\xi \end{aligned}$$

for \(\gamma _{m,h} := \frac{2m\pi }{h}\). First, let us compute the \(L_\tau ^2\) norm. A direct computation gives

$$\begin{aligned} \frac{1}{24}(\xi +\gamma _{m,h})^3 - s_h^{+}(\xi )&=\frac{\pi ^3}{3}\left( \frac{m}{h}\right) ^3+\frac{\pi ^2 \xi }{6}\left( \frac{m}{h}\right) ^2+\frac{\pi \xi ^2}{4}\left( \frac{m}{h}\right) +\frac{\xi ^3}{24}+\frac{1}{h^2}\left( \xi -\frac{2}{h}\sin \left( \frac{h\xi }{2}\right) \right) \end{aligned}$$

and it is easy to verify that

$$\begin{aligned}&\left| \frac{\pi ^2 \xi }{6}\left( \frac{m}{h}\right) ^2+\frac{\pi \xi ^2}{4}\left( \frac{m}{h}\right) +\frac{\xi ^3}{24} \right. \\&\quad \left. +\frac{1}{h}\left( \xi -\frac{2}{h}\sin \left( \frac{h\xi }{2}\right) \right) \right| \lesssim \frac{m^2}{h^3}, \text { for all } \xi \in \mathbb {T}_h, \end{aligned}$$

which indicates that \(\frac{\pi ^3}{3}(\frac{m}{h})^3\) is the dominant part in \(\frac{1}{24}(\xi +\gamma _{m,h})^3 - s_h^{+}(\xi )\). In particular, there exists \(m_0 \gg 1\), independent of h, such that for \(m \leqq - m_0\),

$$\begin{aligned} - \frac{1}{24}(\xi +\gamma _{m,h})^3 + s_h^{+}(\xi ) > rsim \left( \frac{|m_0|}{h}\right) ^3 \gg 1, \text { for all } \xi \in \mathbb {T}_h. \end{aligned}$$
(A.3)

Using the above-mentioned observation, we have for \(m\leqq m_0\)

$$\begin{aligned}&\left\| {{\widehat{\theta }}}( \tau )\left\langle \tau - \frac{1}{24}(\xi + \gamma _{m,h} )^3 + s_h^+(\xi ) \right\rangle ^b \right\| _{L_{\tau }^2}^2 \\&\quad \geqq \int _0^\infty |{{\widehat{\theta }}}( \tau )|^2 \left\langle \tau - \frac{1}{24}(\xi + \gamma _{m,h} )^3 + s_h^+(\xi ) \right\rangle ^{2b} \mathrm{d}\tau \\&\quad > rsim \left( \frac{|m_0|}{h}\right) ^{6b}\int _0^\infty |{{\widehat{\theta }}}( \tau )|^2 \mathrm{d}\tau \\&\quad > rsim \left( \frac{|m_0|}{h}\right) ^{6b}, \end{aligned}$$

which implies that

$$\begin{aligned}&\Vert \theta (t) l_h S_h^{+}(t) f_h \Vert _{X_{+}^{s,b}}^2\\&\quad > rsim \left( \frac{|m_0|}{h}\right) ^{6b}\sum _{m\leqq -m_0}\int _{-\frac{\pi }{h}}^{\frac{\pi }{h}} \langle \xi +\gamma _{m,h} \rangle ^{2s} \mathcal {L}_h(\xi +\gamma _{m,h})^2 |{{\mathcal {F}}}_h(f_h)(\xi )|^2 \mathrm{d}\xi \\&\quad > rsim \left( \frac{|m_0|}{h}\right) ^{6b} \int _{-\frac{\pi }{h}}^{\frac{\pi }{h}} \langle \xi +\gamma _{m_0,h} \rangle ^{2s} \left( \frac{4\sin ^2\left( \frac{h\xi }{2}\right) }{h^2(\xi +\gamma _{m_0,h})^2} \right) ^2 |{{\mathcal {F}}}_h(f_h)(\xi )|^2 \mathrm{d}\xi . \end{aligned}$$

Since

$$\begin{aligned} |\xi | \lesssim |\xi +\gamma _{m_0,h}| \lesssim |\gamma _{m_0,h}| \quad \text{ and } \quad \sin ^2\left( \frac{h\xi }{2}\right) \geqq \frac{1}{2} \end{aligned}$$

for all \(\xi \in \text{ supp } {{\mathcal {F}}}_h(f_h)\), we conclude that

$$\begin{aligned} \Vert \theta (t) l_h S_h^{+}(t) f_h \Vert _{X_{+}^{s,b}}^2 > rsim&~{}\left( \frac{|m_0|}{h}\right) ^{6b} \int _{-\frac{\pi }{h}}^{\frac{\pi }{h}} \langle \xi \rangle ^{2s} (h\gamma _{m_0,h})^{-4}|{{\mathcal {F}}}_h(f_h)(\xi )|^2 \mathrm{d}\xi \\ > rsim&~{}\frac{|m_0|^{6b-4}}{h^{6b}}\Vert f_h\Vert _{H_h^s}^2. \end{aligned}$$

\(\square \)

Appendix B. Analysis for General Nonlinearities

This appendix is devoted to some estimates for the higher-order remainder term introduced in Section 2 to complete our analysis established in Sections 4 and 7.2 . For any real number \(\rho \in \mathbb {R}\), we write \(\rho ^+\) if there exists a small \(0 < \epsilon \ll 1\) such that \(\rho ^+ = \rho + \epsilon \). Analogously, we use \(\rho ^-\). The main estimate dealt with in this section is as follows:

Lemma B.1

Let \(0 \leqq s \leqq 1\) and \(0<h \leqq 1\) be given. Assume that

$$\begin{aligned} \Vert u_h^\pm \Vert _{X_{h,\pm }^{s,\frac{1}{2}^+}}\leqq M, \end{aligned}$$

for some constant \(M > 0\). Then, for \({\mathcal {R}}\) as in (2.1), we have

$$\begin{aligned}&\bigg \Vert \int _0^t S_h^\pm (t-t_1) \nabla _h e^{\pm \frac{t_1}{h^2}\partial _h}h^2\mathcal {R}(t_1) \mathrm{d}t_1\bigg \Vert _{X_{h,\pm }^{s,\frac{1}{2}^+}} \nonumber \\&\quad \lesssim h^{\min \{\frac{5}{4}-s, \frac{3}{4}+s\}^{-}}T^{\frac{3}{4}}M^3 \sup _{|r|\leqq Ch^\frac{3}{2}M}|V^{(4)}(r)|, \end{aligned}$$
(B.1)

where the constant C in supremum depends only on \(\frac{1}{2}^+\).

Remark B.2

As seen in the proofs of Propositions 4.1, M depends on the initial condition. Meanwhile, in the proofs of Propositions 7.3 and 2.2 , M depends not only on the initial condition but also on the local existence time, especially, \(T^{0^-}\). However, owing to \(T^{\frac{3}{4}}\), the right-hand side of (B.1) can be sufficiently small by choosing a suitable time T independent of h.

Remark B.3

Lemma B.1 indeed completes the proof of Proposition 7.3.

Remark B.4

Together with the embedding property (Lemma 3.12 (3)), Lemma B.1 completes the proofs of Propositions 4.1 and 2.2 .

Remark B.5

Lemma B.1 ensures that the higher-order term in (2.8) is indeed the error term as \(h \rightarrow 0\) in the proof of Proposition 2.2. More precisely, in a strong contrast to the quadratic error terms

$$\begin{aligned} \int _0^t S_h^\pm (t-t_1) \nabla _h \left( 2u_h^\pm (t_1)(e^{\pm \frac{2t_1}{h^2}\partial _h}u_h^{\mp }(t_1)) + (e^{\pm \frac{2t_1}{h^2}\partial _h}u_h^{\mp }(t_1))^2 \right) \; \mathrm{d}t_1 \end{aligned}$$

in the proof of Proposition 2.2 (see also Lemmas 6.3 and 6.4 ), Lemma B.1 ensures that the higher-order term itself in (2.8) can be understood as a strong error term as \(h \rightarrow 0\) in the sense that the smoothness condition on the data is not necessary.

Proof of Lemma B.1

By assumption, we consequently have

$$\begin{aligned} \Vert u_h^\pm \Vert _{C_tH_x^s}\lesssim M \quad \text{ and } \quad \Vert {\tilde{r}}_h\Vert _{C_tH_x^s}\lesssim M. \end{aligned}$$

By (3.12), we estimate the higher-order remainder

$$\begin{aligned} \bigg \Vert \int _0^t S_h^\pm (t-t_1) \nabla _h e^{\pm \frac{t_1}{h^2}\partial _h}h^2\mathcal {R}(t_1) \mathrm{d}t_1\bigg \Vert _{X_{h,\pm }^{s,\frac{1}{2}^+}}\lesssim \big \Vert \nabla _h e^{\pm \frac{t}{h^2}\partial _h}h^2\mathcal {R}(t)\big \Vert _{X_{h,\pm }^{s,-(\frac{1}{2}^-)}}. \end{aligned}$$

Interpolating the dualization of the Strichartz estimates (Corollary 5.3), that is,

$$\begin{aligned} \Vert u_h\Vert _{X_{h,\pm }^{0,-(\frac{1}{2}^+)}}\lesssim \Vert |\nabla _h|^{-(\frac{1}{4}^-)}u_h\Vert _{L_t^{\frac{4}{3}^-}L_x^{1^+}}, \end{aligned}$$

with the trivial identity \(\Vert u_h\Vert _{X_{h,\pm }^{0,0}}=\Vert u_h\Vert _{L_t^2L_x^2}\), we have

$$\begin{aligned} \Vert u_h\Vert _{X_{h,\pm }^{0,-(\frac{1}{2}^-)}}\lesssim \Vert |\nabla _h|^{-(\frac{1}{4}^-)}u_h\Vert _{L_t^{\frac{4}{3}}L_x^{1^+}}. \end{aligned}$$

Using this bound and the Hölder inequality, we obtain

$$\begin{aligned} \begin{aligned}&\big \Vert \nabla _h e^{\pm \frac{t}{h^2}\partial _h}h^2\mathcal {R}(t)\big \Vert _{X_{h,\pm }^{s,-(\frac{1}{2}^-)}} \\&\quad \lesssim h^{(\frac{5}{4}-s)^-} \Vert e^{\pm \frac{t}{h^2}\partial _h}\mathcal {R}(t)\Vert _{L_t^{\frac{4}{3}}L_x^{1+}}\\&\quad \lesssim h^{(\frac{5}{4}-s)^{-}}\Big \Vert \big (e^{\pm \frac{t}{h^2}\partial _h}V^{(4)}(h^2{\tilde{r}}_h^*)\big )\cdot \big (e^{\pm \frac{t}{h^2}\partial _h}{\tilde{r}}_h\big )^3\Big \Vert _{L_t^{\frac{4}{3}}L_x^{1}}\\&\quad \leqq h^{(\frac{5}{4}-s)^{-}}T^{\frac{3}{4}}\big \Vert \big (e^{\pm \frac{t}{h^2}\partial _h}V^{(4)}(h^2{\tilde{r}}_h^*)\big )\cdot \big (e^{\pm \frac{t}{h^2}\partial _h}{\tilde{r}}_h\big )\big \Vert _{L_t^\infty L_x^2}\Vert e^{\pm \frac{t}{h^2}\partial _h}{\tilde{r}}_h\Vert _{L_t^\infty L_x^4}^2. \end{aligned} \end{aligned}$$

By unitarity (with the algebra in footnote 1), we remove the translation operator as follows:

$$\begin{aligned} \big \Vert \big (e^{\pm \frac{t}{h^2}\partial _h}V^{(4)}(h^2{\tilde{r}}_h^*)\big )\cdot \big (e^{\pm \frac{t}{h^2}\partial _h}{\tilde{r}}_h\big )\big \Vert _{L_t^\infty L_x^2} \lesssim \Vert V^{(4)}(h^2{\tilde{r}}_h^*)\Vert _{L_t^\infty L_x^\infty }\Vert {\tilde{r}}_h\Vert _{L_t^\infty L_x^2}. \end{aligned}$$

By assumption, we have

$$\begin{aligned} \Vert h^2{\tilde{r}}_h^*\Vert _{C_tL_x^\infty }\leqq \Vert h^2{\tilde{r}}_h\Vert _{C_tL_x^\infty }\leqq h^{\frac{3}{2}}\Vert {\tilde{r}}_h\Vert _{C_tL_x^2}\leqq h^{\frac{3}{2}}\Big \{\Vert u_h^+\Vert _{C_tL_x^2}+\Vert u_h^-\Vert _{C_tL_x^2}\Big \}\leqq Ch^{3/2} M. \end{aligned}$$

Hence, it follows that

$$\begin{aligned} \Vert V^{(4)}(h^2{\tilde{r}}_h^*)\Vert _{L_t^\infty L_x^\infty }\leqq \sup _{|r|\leqq Ch^{3/2} M}|V^{(4)}(r)|<\infty . \end{aligned}$$

For \(\Vert e^{\pm \frac{t}{h^2}\partial _h}{\tilde{r}}_h\Vert _{L_t^\infty L_x^4}\), if \(0\leqq s\leqq \frac{1}{4}\), then by the Sobolev inequality, unitarity and Lemma 3.3,

$$\begin{aligned} \Vert e^{\pm \frac{t}{h^2}\partial _h}{\tilde{r}}_h\Vert _{L_x^4}\lesssim \Vert e^{\pm \frac{t}{h^2}\partial _h}{\tilde{r}}_h\Vert _{{\dot{H}}^{\frac{1}{4}}} \lesssim h^{-\frac{1-4s}{4}}\Vert {\tilde{r}}_h\Vert _{{\dot{H}}_x^s}\lesssim h^{-\frac{1-4s}{4}}M. \end{aligned}$$

Meanwhile, if \(\frac{1}{4}<s\leqq 1\), then

$$\begin{aligned} \Vert e^{\pm \frac{t}{h^2}\partial _h}{\tilde{r}}_h\Vert _{L_x^4}\lesssim \Vert e^{\pm \frac{t}{h^2}\partial _h}{\tilde{r}}_h\Vert _{H_x^s}=\Vert {\tilde{r}}_h\Vert _{H_x^s}\lesssim M. \end{aligned}$$

Therefore, by combining all these results, we complete the proof of (B.1). \(\quad \square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, Y., Kwak, C. & Yang, C. On the Korteweg–de Vries Limit for the Fermi–Pasta–Ulam System. Arch Rational Mech Anal 240, 1091–1145 (2021). https://doi.org/10.1007/s00205-021-01629-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-021-01629-4

Navigation