Skip to Main Content

St. Petersburg Mathematical Journal

This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.

ISSN 1547-7371 (online) ISSN 1061-0022 (print)

The 2020 MCQ for St. Petersburg Mathematical Journal is 0.68.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Classes of convolutions with a singular family of kernels: Sharp constants for approximation by spaces of shifts
HTML articles powered by AMS MathViewer

by O. L. Vinogradov
Translated by: O. L. Vinogradov
St. Petersburg Math. J. 32 (2021), 233-260
DOI: https://doi.org/10.1090/spmj/1646
Published electronically: March 2, 2021

Abstract:

Let $\sigma >0$, and let $G,B\in L(\mathbb R)$. The paper is devoted to approximation of classes of functions $f$ for every $\varepsilon >0$ representable as \begin{equation*} f(x)=F_{\varepsilon }(x)+ \frac {1}{2\pi }\int _{\mathbb R}\varphi (t)G_{\varepsilon }(x-t) dt, \end{equation*} where $F_{\varepsilon }$ is an entire function of type not exceeding $\varepsilon$, $G_{\varepsilon }\in L(\mathbb R)$, and $\varphi \in L_p(\mathbb R)$. The approximating space $\mathbf S_B$ consists of functions of the form \begin{equation*} s(x)=\sum _{j\in \mathbb Z}\beta _jB\Big (x-\frac {j\pi }{\sigma }\Big ). \end{equation*} Under some conditions on $G=\{G_{\varepsilon }\}$ and $B$, linear operators ${\mathcal X}_{\sigma ,G,B}$ with values in $\mathbf S_B$ are constructed for which $\|f-{\mathcal X}_{\sigma ,G,B}(f)\|_p\leq {\mathcal K}_{\sigma ,G}\|\varphi \|_p$. For $p=1,\infty$ the constant ${\mathcal K}_{\sigma ,G}$ (it is an analog of the well-known Favard constant) cannot be reduced, even if one replaces the left-hand side by the best approximation by the space $\mathbf S_B$. The results of the paper generalize classical inequalities for approximations by entire functions of exponential type and by splines.
References
  • J. Favard, Sur les meilleurs procédés d’approximation de certaines classes des fonctions par des polynomes trigonométriques, Bull. de Sci. Math. 61 (1937), 209–224, 243–256.
  • N. I. Akhiezer and M. G. Krein, On the best approximation of differentiable periodic functions by trigonometric sums, Dokl. Akad. Nauk SSSR 15 (1937), no. 3, 107–112. (Russian)
  • S. Nikolsky, Approximation of functions in the mean by trigonometrical polynomials, Bull. Acad. Sci. URSS. Sér. Math. [Izvestia Akad. Nauk SSSR] 10 (1946), 207–256 (Russian, with English summary). MR 0017402
  • N. Korneĭchuk, Exact constants in approximation theory, Encyclopedia of Mathematics and its Applications, vol. 38, Cambridge University Press, Cambridge, 1991. Translated from the Russian by K. Ivanov. MR 1124406, DOI 10.1017/CBO9781107325791
  • N. I. Achieser, Theory of approximation, Dover Publications, Inc., New York, 1992. Translated from the Russian and with a preface by Charles J. Hyman; Reprint of the 1956 English translation. MR 1217081
  • Allan Pinkus, $n$-widths in approximation theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 7, Springer-Verlag, Berlin, 1985. MR 774404, DOI 10.1007/978-3-642-69894-1
  • V. F. Babenko, Extremal problems in approximation theory and inequalities for rearrangements, Dokl. Akad. Nauk SSSR 290 (1986), no. 5, 1033–1036 (Russian). MR 863363
  • V. F. Babenko, Approximation of convolution classes, Sibirsk. Mat. Zh. 28 (1987), no. 5, 6–21, 226 (Russian). MR 924971
  • V. M. Tikhomirov, On extremal subspaces for classes of functions defined by kernels that do not increase oscillation, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 4 (1997), 16–19, 70 (Russian, with Russian summary); English transl., Moscow Univ. Math. Bull. 52 (1997), no. 4, 17–20. MR 1483052
  • A. A. Ligun, Inequalities for upper bounds of functions, Anal. Math. 2 (1976), no. 1, 11–40 (English, with Russian summary). MR 412363, DOI 10.1007/BF02079905
  • O. L. Vinogradov, Analog of the Akhiezer-Krein-Favard sums for periodic splines of minimal defect, J. Math. Sci. (N.Y.) 114 (2003), no. 5, 1608–1627. Function theory and applications. MR 1981299, DOI 10.1023/A:1022360711364
  • O. L. Vinogradov, Sharp inequalities for approximations of classes of periodic convolutions by subspaces of shifts of odd dimension, Mat. Zametki 85 (2009), no. 4, 569–584 (Russian, with Russian summary); English transl., Math. Notes 85 (2009), no. 3-4, 544–557. MR 2549418, DOI 10.1134/S0001434609030250
  • M. G. Krein, On the best approximation of continuous differentiable functions on the whole real axis, Dokl. Akad. Nauk SSSR 18 (1938), no. 9, 619–623. (Russian)
  • O. L. Vinogradov, Sharp Jackson-type inequalities for approximations of classes of convolutions by entire functions of finite degree, Algebra i Analiz 17 (2005), no. 4, 59–114 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 17 (2006), no. 4, 593–633. MR 2173937, DOI 10.1090/S1061-0022-06-00922-8
  • O. L. Vinogradov, Sharp inequalities for approximations of convolution classes on the real axis as the limit case of inequalities for periodic convolutions, Sibirsk. Mat. Zh. 58 (2017), no. 2, 251–269 (Russian, with Russian summary); English transl., Sib. Math. J. 58 (2017), no. 2, 190–204. MR 3711802, DOI 10.1134/s0037446617020021
  • O. L. Vinogradov and A. V. Gladkaya, A nonperiodic spline analogue of Akhiezer-Kreĭn-Favard operators, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 440 (2015), no. Analiticheskaya Teoriya Chisel i Teoriya Funktsiĭ. 30, 8–35 (Russian, with English summary); English transl., J. Math. Sci. (N.Y.) 217 (2016), no. 1, 3–22. MR 3504456, DOI 10.1007/s10958-016-2950-7
  • O. L. Vinogradov, Sharp constants of approximations of convolution classes with an integrable kernel by spaces of shifts, Algebra i Analiz 30 (2018), no. 5, 112–148 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 30 (2019), no. 5, 841–867. MR 3856103, DOI 10.1090/spmj/1572
  • M. D. Buhmann, Multivariate cardinal interpolation with radial-basis functions, Constr. Approx. 6 (1990), no. 3, 225–255. MR 1054754, DOI 10.1007/BF01890410
  • A. Ron, Introduction to shift-invariant spaces. Linear independence, Multivariate approximation and applications, Cambridge Univ. Press, Cambridge, 2001, pp. 112–151. MR 1839598, DOI 10.1017/CBO9780511569616.006
  • I. Ya. Novikov, V. Yu. Protasov, and M. A. Skopina, Wavelet theory, Translations of Mathematical Monographs, vol. 239, American Mathematical Society, Providence, RI, 2011. Translated from the 2005 Russian original by Evgenia Sorokina. MR 2779330, DOI 10.1090/mmono/239
  • I. J. Schoenberg, Cardinal spline interpolation, Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 12, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1973. MR 0420078
  • G. G. Magaril-Il′yaev, Average dimension, widths and optimal recovery of Sobolev classes of functions on a straight line, Mat. Sb. 182 (1991), no. 11, 1635–1656 (Russian); English transl., Math. USSR-Sb. 74 (1993), no. 2, 381–403. MR 1137866
  • Boris Makarov and Anatolii Podkorytov, Real analysis: measures, integrals and applications, Universitext, Springer, London, 2013. Translated from the 2011 Russian original. MR 3089088, DOI 10.1007/978-1-4471-5122-7
  • Tobias Kloos, Zeros of the Zak transform of totally positive functions, J. Fourier Anal. Appl. 21 (2015), no. 5, 1130–1145. MR 3393698, DOI 10.1007/s00041-015-9402-5
  • V. K. Dzyadyk, Vvedenie v teoriyu ravnomernogo priblizheniya funktsiĭ polinomami, Izdat. “Nauka”, Moscow, 1977 (Russian). MR 0612836
  • A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776
  • Samuel Karlin, Total positivity. Vol. I, Stanford University Press, Stanford, Calif., 1968. MR 0230102
  • Ronald A. DeVore and George G. Lorentz, Constructive approximation, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 303, Springer-Verlag, Berlin, 1993. MR 1261635
  • K. Jetter, S. D. Riemenschneider, and N. Sivakumar, Schoenberg’s exponential Euler spline curves, Proc. Roy. Soc. Edinburgh Sect. A 118 (1991), no. 1-2, 21–33. MR 1113840, DOI 10.1017/S0308210500028869
  • B. J. C. Baxter and N. Sivakumar, On shifted cardinal interpolation by Gaussians and multiquadrics, J. Approx. Theory 87 (1996), no. 1, 36–59. MR 1410611, DOI 10.1006/jath.1996.0091
  • Nguen Tkhi Tkh′eu Khoa, Rolle’s theorem for differential operators, and some extremal problems of approximation theory, Dokl. Akad. Nauk SSSR 295 (1987), no. 6, 1313–1318 (Russian); English transl., Soviet Math. Dokl. 36 (1988), no. 1, 197–202. MR 906556
  • O. L. Vinogradov and A. Yu. Ulitskaya, Zeros of the Zak transform of averaged totally positive functions, J. Approx. Theory 222 (2017), 55–63. MR 3692123, DOI 10.1016/j.jat.2017.06.001
Similar Articles
  • Retrieve articles in St. Petersburg Mathematical Journal with MSC (2020): 41A17, 41A44
  • Retrieve articles in all journals with MSC (2020): 41A17, 41A44
Bibliographic Information
  • O. L. Vinogradov
  • Affiliation: St. Petersburg State University, Universitetskii pr.  28, 198504 St. Petersburg, Russia
  • Email: olvin@math.spbu.ru
  • Received by editor(s): September 9, 2018
  • Published electronically: March 2, 2021
  • Additional Notes: This work was supported by the Russian Science Foundation under grant no. 18-11-00055
  • © Copyright 2021 American Mathematical Society
  • Journal: St. Petersburg Math. J. 32 (2021), 233-260
  • MSC (2020): Primary 41A17, 41A44
  • DOI: https://doi.org/10.1090/spmj/1646
  • MathSciNet review: 4075001